Chung Carolina H, Chandrasekaran Sriram
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
PNAS Nexus. 2022 Jul 22;1(3):pgac132. doi: 10.1093/pnasnexus/pgac132. eCollection 2022 Jul.
Drug combinations are a promising strategy to counter antibiotic resistance. However, current experimental and computational approaches do not account for the entire complexity involved in combination therapy design, such as the effect of pathogen metabolic heterogeneity, changes in the growth environment, drug treatment order, and time interval. To address these limitations, we present a comprehensive approach that uses genome-scale metabolic modeling and machine learning to guide combination therapy design. Our mechanistic approach (a) accommodates diverse data types, (b) accounts for time- and order-specific interactions, and (c) accurately predicts drug interactions in various growth conditions and their robustness to pathogen metabolic heterogeneity. Our approach achieved high accuracy (area under the receiver operating curve (AUROC) = 0.83 for synergy, AUROC = 0.98 for antagonism) in predicting drug interactions for cultured in 57 metabolic conditions based on experimental validation. The entropy in bacterial metabolic response was predictive of combination therapy outcomes across time scales and growth conditions. Simulation of metabolic heterogeneity using population FBA identified two subpopulations of cells defined by the levels of three proteins (eno, fadB, and fabD) in glycolysis and lipid metabolism that influence cell tolerance to a broad range of antibiotic combinations. Analysis of the vast landscape of condition-specific drug interactions revealed a set of 24 robustly synergistic drug combinations with potential for clinical use.
药物联合是对抗抗生素耐药性的一种有前景的策略。然而,当前的实验和计算方法并未考虑联合治疗设计中涉及的全部复杂性,例如病原体代谢异质性的影响、生长环境的变化、药物治疗顺序和时间间隔。为了解决这些局限性,我们提出了一种综合方法,该方法使用基因组规模的代谢模型和机器学习来指导联合治疗设计。我们的机制方法(a)能够处理多种数据类型,(b)考虑时间和顺序特异性相互作用,(c)准确预测各种生长条件下的药物相互作用及其对病原体代谢异质性的稳健性。基于实验验证,我们的方法在预测57种代谢条件下培养的药物相互作用时达到了高精度(协同作用的受试者操作特征曲线下面积(AUROC)=0.83,拮抗作用的AUROC=0.98)。细菌代谢反应中的熵可预测跨时间尺度和生长条件的联合治疗结果。使用群体通量平衡分析(FBA)对代谢异质性进行模拟,确定了由糖酵解和脂质代谢中三种蛋白质(烯醇酶、fadB和fabD)水平定义的两个亚群,这些蛋白质影响细胞对多种抗生素联合的耐受性。对特定条件下药物相互作用的广阔图景进行分析,发现了一组24种具有临床应用潜力的强效协同药物组合。