Suppr超能文献

产氢海洋弧菌核心转录组揭示糖酵解在其高效产氢中的作用。

Core Transcriptome of Hydrogen Producing Marine Vibrios Reveals Contribution of Glycolysis in Their Efficient Hydrogen Production.

机构信息

Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.

Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

出版信息

Curr Microbiol. 2024 Jun 19;81(8):230. doi: 10.1007/s00284-024-03764-z.

Abstract

Pyruvate (Pyr) is the end product of the glycolysis pathway. Pyr is also renewable and is further metabolized to produce formate, which is the precursor of H, via pyruvate formate lyase (PFL) under anaerobic conditions. The formate is excluded and re-imported via the formate channel and is then converted to H via the formate hydrogenlyase (FHL) complex. In H producing marine vibrios, such as Vibrio tritonius and Vibrio porteresiae in the Porteresiae clade of the family Vibrionaceae, apparent but inefficient H production from Pyr has been observed. To elucidate the molecular mechanism of why this inefficient H production is observed in Pry-metabolized marine vibrio cells and how glycolysis affects those H productions of marine vibrios, the "Core Transcriptome" approach to find common gene expressions of those two major H producing Vibrio species in Pyr metabolism was first applied. In the Pyr-metabolized vibrio cells, genes for the "Phosphoenolpyruvate (PEP)-Pyruvate-Oxalate (PPO)" node, due to energy saving, and PhoB-, RhaR-, and DeoR-regulons were regulated. Interestingly, a gene responsible for oxalate/formate family antiporter was up-regulated in Pyr-metabolized cells compared to those of Glc-metabolized cells, which provides new insights into the uses of alternative formate exclusion mechanics due to energy deficiencies in Pyr-metabolized marine vibrios cells. We further discuss the contribution of the Embden-Meyerhof-Parnas (EMP) pathway to efficient H production in marine vibrios.

摘要

丙酮酸(Pyr)是糖酵解途径的终产物。Pyr 也是可再生的,并且在厌氧条件下通过丙酮酸甲酸裂解酶(PFL)进一步代谢为甲酸盐,甲酸盐是 H 的前体。在 H 产生的海洋弧菌中,例如在 Vibrionaceae 科的 Porteresiae 分支中的 Vibrio tritonius 和 Vibrio porteresiae,已经观察到从 Pyr 明显但低效地产生 H。为了阐明为什么在 Pry 代谢的海洋弧菌细胞中观察到这种低效 H 产生的分子机制以及糖酵解如何影响这些海洋弧菌的 H 产生,首先应用了“核心转录组”方法来寻找这两种主要 H 产生的 Vibrio 物种在 Pyr 代谢中的共同基因表达。在 Pyr 代谢的弧菌细胞中,由于节能,与“磷酸烯醇丙酮酸(PEP)-丙酮酸-草酸(PPO)”节点相关的基因以及 PhoB、RhaR 和 DeoR 调控子受到调节。有趣的是,与 Glc 代谢的细胞相比,负责草酸/甲酸盐家族反向转运蛋白的基因在 Pyr 代谢的细胞中上调,这为 Pyr 代谢的海洋弧菌细胞由于能量不足而使用替代甲酸盐排除机制提供了新的见解。我们进一步讨论了 EMP 途径对海洋弧菌中高效 H 产生的贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验