Laboratory of Integrative Structural Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover D-30167, Germany.
Sci Adv. 2024 Jun 21;10(25):eadm9404. doi: 10.1126/sciadv.adm9404. Epub 2024 Jun 19.
In the quest for new bioactive substances, nonribosomal peptide synthetases (NRPS) provide biodiversity by synthesizing nonproteinaceous peptides with high cellular activity. NRPS machinery consists of multiple modules, each catalyzing a unique series of chemical reactions. Incomplete understanding of the biophysical principles orchestrating these reaction arrays limits the exploitation of NRPSs in synthetic biology. Here, we use nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to solve the conundrum of how intermodular recognition is coupled with loaded carrier protein specificity in the tomaymycin NRPS. We discover an adaptor domain that directly recruits the loaded carrier protein from the initiation module to the elongation module and reveal its mechanism of action. The adaptor domain of the type found here has specificity rules that could potentially be exploited in the design of engineered NRPS machinery.
在寻找新的生物活性物质的过程中,非核糖体肽合成酶(NRPS)通过合成具有高细胞活性的非蛋白肽提供了多样性。NRPS 机械由多个模块组成,每个模块催化一组独特的化学反应。对协调这些反应序列的生物物理原理的不完全理解限制了 NRPS 在合成生物学中的应用。在这里,我们使用核磁共振(NMR)光谱和质谱来解决这样一个难题,即如何将模块间的识别与 tomaymycin NRPS 中负载载体蛋白的特异性偶联起来。我们发现了一个衔接域,它可以直接将负载的载体蛋白从起始模块招募到延伸模块,并揭示了它的作用机制。这里发现的这种类型的衔接域具有特异性规则,这些规则有可能被用于设计工程 NRPS 机械。