Suppr超能文献

物质使用障碍随机试验中尿液毒理学及其他生物样本缺失的预测因素。

Predictors of urine toxicology and other biologic specimen missingness in randomized trials of substance use disorders.

作者信息

Kelley A Taylor, Incze Michael A, Baumgartner Michael, Campbell Aimee N C, Nunes Edward V, Scharfstein Daniel O

机构信息

Division of General Internal Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Greater Intermountain Node, National Institute on Drug Abuse Clinical Trial Network, Program of Addiction Research, Clinical Care, Knowledge, and Advocacy (PARCKA), Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Informatics, Decision Enhancement, and Analytic Sciences (IDEAS) Center, VA Salt Lake City Health Care System, Salt Lake City, UT, USA; Vulnerable Veteran Patient-Aligned Care Team, VA Salt Lake City Health Care System, Salt Lake City, UT, USA.

Division of General Internal Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Greater Intermountain Node, National Institute on Drug Abuse Clinical Trial Network, Program of Addiction Research, Clinical Care, Knowledge, and Advocacy (PARCKA), Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.

出版信息

Drug Alcohol Depend. 2024 Aug 1;261:111368. doi: 10.1016/j.drugalcdep.2024.111368. Epub 2024 Jun 12.

Abstract

BACKGROUND

High levels of missing outcome data for biologically confirmed substance use (BCSU) threaten the validity of substance use disorder (SUD) clinical trials. Underlying attributes of clinical trials could explain BCSU missingness and identify targets for improved trial design.

METHODS

We reviewed 21 clinical trials funded by the NIDA National Drug Abuse Treatment Clinical Trials Network (CTN) and published from 2005 to 2018 that examined pharmacologic and psychosocial interventions for SUD. We used configurational analysis-a Boolean algebra approach that identifies an attribute or combination of attributes predictive of an outcome-to identify trial design features and participant characteristics associated with high levels of BCSU missingness. Associations were identified by configuration complexity, consistency, coverage, and robustness. We limited results using a consistency threshold of 0.75 and summarized model fit using the product of consistency and coverage.

RESULTS

For trial design features, the final solution consisted of two pathways: psychosocial treatment as a trial intervention OR larger trial arm size (complexity=2, consistency=0.79, coverage=0.93, robustness score=0.71). For participant characteristics, the final solution consisted of two pathways: interventions targeting individuals with poly- or nonspecific substance use OR younger age (complexity=2, consistency=0.75, coverage=0.86, robustness score=1.00).

CONCLUSIONS

Psychosocial treatments, larger trial arm size, interventions targeting individuals with poly- or nonspecific substance use, and younger age among trial participants were predictive of missing BCSU data in SUD clinical trials. Interventions to mitigate missing data that focus on these attributes may reduce threats to validity and improve utility of SUD clinical trials.

摘要

背景

生物学确诊的物质使用(BCSU)结果数据大量缺失,威胁着物质使用障碍(SUD)临床试验的有效性。临床试验的潜在属性可以解释BCSU数据缺失的原因,并确定改进试验设计的目标。

方法

我们回顾了2005年至2018年期间由美国国家药物滥用研究所国家药物滥用治疗临床试验网络(CTN)资助并发表的21项临床试验,这些试验研究了针对SUD的药物和心理社会干预措施。我们使用构型分析——一种布尔代数方法,可识别预测结果的属性或属性组合——来确定与高水平BCSU数据缺失相关的试验设计特征和参与者特征。通过构型复杂性、一致性、覆盖率和稳健性来确定关联。我们使用0.75的一致性阈值来限制结果,并使用一致性和覆盖率的乘积来总结模型拟合情况。

结果

对于试验设计特征,最终解决方案包括两条途径:心理社会治疗作为试验干预措施或更大的试验组规模(复杂性=2,一致性=0.79,覆盖率=0.93,稳健性得分=0.71)。对于参与者特征,最终解决方案包括两条途径:针对多种或非特定物质使用个体的干预措施或较年轻的年龄(复杂性=2,一致性=0.75,覆盖率=0.86,稳健性得分=1.00)。

结论

心理社会治疗、更大的试验组规模、针对多种或非特定物质使用个体的干预措施以及试验参与者较年轻的年龄,可预测SUD临床试验中BCSU数据的缺失。针对这些属性的减少缺失数据的干预措施,可能会降低对有效性的威胁,并提高SUD临床试验的效用。

相似文献

2
Psychosocial interventions for cannabis use disorder.针对大麻使用障碍的心理社会干预措施。
Cochrane Database Syst Rev. 2016 May 5;2016(5):CD005336. doi: 10.1002/14651858.CD005336.pub4.
5
Pharmacotherapy for anxiety and comorbid alcohol use disorders.焦虑症合并酒精使用障碍的药物治疗
Cochrane Database Syst Rev. 2015 Jan 20;1(1):CD007505. doi: 10.1002/14651858.CD007505.pub2.
6
Interventions to reduce harm from continued tobacco use.减少持续吸烟危害的干预措施。
Cochrane Database Syst Rev. 2016 Oct 13;10(10):CD005231. doi: 10.1002/14651858.CD005231.pub3.
7
Eliciting adverse effects data from participants in clinical trials.从临床试验参与者中获取不良反应数据。
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
8
Pharmacological interventions for people with borderline personality disorder.药物干预治疗边缘型人格障碍患者。
Cochrane Database Syst Rev. 2022 Nov 14;11(11):CD012956. doi: 10.1002/14651858.CD012956.pub2.
9
Psychosocial interventions for stimulant use disorder.兴奋剂使用障碍的心理社会干预。
Cochrane Database Syst Rev. 2024 Feb 15;2(2):CD011866. doi: 10.1002/14651858.CD011866.pub3.

本文引用的文献

3
Methods for handling missing binary data in substance use disorder trials.处理物质使用障碍试验中缺失二进制数据的方法。
Drug Alcohol Depend. 2023 Sep 1;250:110897. doi: 10.1016/j.drugalcdep.2023.110897. Epub 2023 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验