Suppr超能文献

美国与可改变风险因素相关的全部中风的人群归因分数。

Population attributable fraction of total stroke associated with modifiable risk factors in the United States.

作者信息

Lee Mark, Lakshminarayan Kamakshi, Sedaghat Sanaz, Sabayan Behnam, Chen Lin Yee, Johansen Michelle C, Gottesman Rebecca F, Heckbert Susan R, Misialek Jeffrey R, Szklo Moyses, Lutsey Pamela L

机构信息

Minnesota Population Center, University of Minnesota, Minneapolis, MN 55455, United States.

Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55454, United States.

出版信息

Am J Epidemiol. 2024 Dec 2;193(12):1712-1719. doi: 10.1093/aje/kwae132.

Abstract

Stroke is a leading cause of death in the United States across all race/ethnicity and sex groups, though disparities exist. We investigated the potential for primary prevention of total first stroke for Americans aged 20 years or older, stratified by sex and race/ethnicity. Specifically, we calculated population attributable fractions (PAFs) of first stroke for 7 potentially modifiable risk factors: smoking, physical inactivity, poor diet, obesity, hypertension, diabetes, and atrial fibrillation. Population attributable fractions are a function of (1) the relative risk of first stroke for people with the exposure and (2) the prevalence of the risk factor in the population. Relative risks came from recent meta-analyses, and sex- and race/ethnicity-specific prevalence estimates came from the 2015-2018 National Health and Nutrition Examination Survey or Multi-Ethnic Study of Atherosclerosis (for atrial fibrillation only). Approximately one-third of strokes (35.7% [95% CI, 21.6-49.0] for women; 32.7% [95% CI, 19.2-45.1] for men) were attributable to the 7 risk factors we considered. A 20% proportional reduction in stroke risk factors would result in approximately 37 000 fewer strokes annually in the United States. The estimated PAF was highest for non-Hispanic Black women (39.3%; 95% CI, 24.8-52.3) and lowest for non-Hispanic Asian men (25.5%; 95% CI, 14.6-36.2). For most groups, obesity and hypertension were the largest contributors to stroke rates.

摘要

在美国,中风是所有种族/族裔和性别群体中主要的死亡原因,尽管存在差异。我们调查了20岁及以上美国人首次发生全面中风的一级预防潜力,并按性别和种族/族裔进行了分层。具体而言,我们计算了7种潜在可改变风险因素导致首次中风的人群归因分数(PAF):吸烟、缺乏身体活动、饮食不良、肥胖、高血压、糖尿病和心房颤动。人群归因分数是以下两个因素的函数:(1)暴露人群首次中风的相对风险;(2)该风险因素在人群中的患病率。相对风险来自近期的荟萃分析,特定性别和种族/族裔的患病率估计值来自2015 - 2018年全国健康和营养检查调查或动脉粥样硬化多族裔研究(仅针对心房颤动)。大约三分之一的中风(女性为35.7% [95% CI,21.6 - 49.0];男性为32.7% [95% CI,19.2 - 45.1])可归因于我们所考虑的7种风险因素。中风风险因素若按比例降低20%,在美国每年将减少约37000例中风病例。估计的人群归因分数在非西班牙裔黑人女性中最高(39.3%;95% CI,24.8 - 52.3),在非西班牙裔亚洲男性中最低(25.5%;95% CI,14.6 - 36.2)。对于大多数群体而言,肥胖和高血压是中风发生率的最大促成因素。

相似文献

9
Risk Factors Associated With Alzheimer Disease and Related Dementias by Sex and Race and Ethnicity in the US.
JAMA Neurol. 2022 Jun 1;79(6):584-591. doi: 10.1001/jamaneurol.2022.0976.

引用本文的文献

1
Shifting global landscape of BMI-related atrial fibrillation: a 50-year trend and projection analysis.
J Health Popul Nutr. 2025 Aug 28;44(1):312. doi: 10.1186/s41043-025-01056-1.
2
Fermented dairy products intake and stroke risk: analyses of NHANES 2007-2018 data.
Front Nutr. 2025 Jul 21;12:1593174. doi: 10.3389/fnut.2025.1593174. eCollection 2025.

本文引用的文献

3
Mortality in the United States, 2021.
NCHS Data Brief. 2022 Dec(456):1-8.
4
Primary Prevention of Ischemic Stroke.
Semin Neurol. 2022 Oct;42(5):571-582. doi: 10.1055/s-0042-1758703. Epub 2022 Nov 17.
6
Cardiovascular Disease Projections in the United States Based on the 2020 Census Estimates.
J Am Coll Cardiol. 2022 Aug 9;80(6):565-578. doi: 10.1016/j.jacc.2022.05.033.
7
The Impact of Sex and Gender on Stroke.
Circ Res. 2022 Feb 18;130(4):512-528. doi: 10.1161/CIRCRESAHA.121.319915. Epub 2022 Feb 17.
8
Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association.
Circulation. 2022 Feb 22;145(8):e153-e639. doi: 10.1161/CIR.0000000000001052. Epub 2022 Jan 26.
9
Measuring Structural Racism: A Guide for Epidemiologists and Other Health Researchers.
Am J Epidemiol. 2022 Mar 24;191(4):539-547. doi: 10.1093/aje/kwab239.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验