Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands.
Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands.
Neuroinformatics. 2024 Jul;22(3):329-352. doi: 10.1007/s12021-024-09671-9. Epub 2024 Jun 20.
Cognitive functioning is increasingly considered when making treatment decisions for patients with a brain tumor in view of a personalized onco-functional balance. Ideally, one can predict cognitive functioning of individual patients to make treatment decisions considering this balance. To make accurate predictions, an informative representation of tumor location is pivotal, yet comparisons of representations are lacking. Therefore, this study compares brain atlases and principal component analysis (PCA) to represent voxel-wise tumor location. Pre-operative cognitive functioning was predicted for 246 patients with a high-grade glioma across eight cognitive tests while using different representations of voxel-wise tumor location as predictors. Voxel-wise tumor location was represented using 13 different frequently-used population average atlases, 13 randomly generated atlases, and 13 representations based on PCA. ElasticNet predictions were compared between representations and against a model solely using tumor volume. Preoperative cognitive functioning could only partly be predicted from tumor location. Performances of different representations were largely similar. Population average atlases did not result in better predictions compared to random atlases. PCA-based representation did not clearly outperform other representations, although summary metrics indicated that PCA-based representations performed somewhat better in our sample. Representations with more regions or components resulted in less accurate predictions. Population average atlases possibly cannot distinguish between functionally distinct areas when applied to patients with a glioma. This stresses the need to develop and validate methods for individual parcellations in the presence of lesions. Future studies may test if the observed small advantage of PCA-based representations generalizes to other data.
认知功能在考虑为脑肿瘤患者做出治疗决策时越来越受到重视,以实现个体化的肿瘤功能平衡。理想情况下,可以预测个体患者的认知功能,以在考虑这种平衡的情况下做出治疗决策。为了进行准确的预测,肿瘤位置的信息表示是至关重要的,但目前缺乏对这些表示的比较。因此,本研究比较了脑图谱和主成分分析(PCA)来表示体素级别的肿瘤位置。在使用不同的体素级别的肿瘤位置表示作为预测因子的情况下,为 246 名高级别胶质瘤患者预测了 8 项认知测试的术前认知功能。使用了 13 种不同的常用人群平均图谱、13 种随机生成的图谱和 13 种基于 PCA 的表示来表示体素级别的肿瘤位置。比较了不同表示之间的弹性网络预测,并与仅使用肿瘤体积的模型进行了比较。术前认知功能只能部分从肿瘤位置预测。不同表示的性能差异很大。与随机图谱相比,人群平均图谱并没有导致更好的预测。基于 PCA 的表示并没有明显优于其他表示,尽管综合指标表明在我们的样本中,基于 PCA 的表示的性能稍好一些。具有更多区域或组件的表示会导致预测精度降低。当应用于患有胶质瘤的患者时,人群平均图谱可能无法区分功能上不同的区域。这强调了需要开发和验证在存在病变的情况下对个体分区的方法。未来的研究可能会检验基于 PCA 的表示的观察到的小优势是否推广到其他数据。
J Neurosurg. 2012-8-31
J Neurosurg. 1994-2
Neurooncol Adv. 2025-5-2
Hum Brain Mapp. 2024-2-1
Proc Natl Acad Sci U S A. 2023-2-28
Radiol Artif Intell. 2022-10-5
IEEE Trans Med Imaging. 2023-4