文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

预测高级别胶质瘤患者的认知功能:在共同空间中评估肿瘤位置的不同表示。

Predicting Cognitive Functioning for Patients with a High-Grade Glioma: Evaluating Different Representations of Tumor Location in a Common Space.

机构信息

Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands.

Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands.

出版信息

Neuroinformatics. 2024 Jul;22(3):329-352. doi: 10.1007/s12021-024-09671-9. Epub 2024 Jun 20.


DOI:10.1007/s12021-024-09671-9
PMID:38900230
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11329426/
Abstract

Cognitive functioning is increasingly considered when making treatment decisions for patients with a brain tumor in view of a personalized onco-functional balance. Ideally, one can predict cognitive functioning of individual patients to make treatment decisions considering this balance. To make accurate predictions, an informative representation of tumor location is pivotal, yet comparisons of representations are lacking. Therefore, this study compares brain atlases and principal component analysis (PCA) to represent voxel-wise tumor location. Pre-operative cognitive functioning was predicted for 246 patients with a high-grade glioma across eight cognitive tests while using different representations of voxel-wise tumor location as predictors. Voxel-wise tumor location was represented using 13 different frequently-used population average atlases, 13 randomly generated atlases, and 13 representations based on PCA. ElasticNet predictions were compared between representations and against a model solely using tumor volume. Preoperative cognitive functioning could only partly be predicted from tumor location. Performances of different representations were largely similar. Population average atlases did not result in better predictions compared to random atlases. PCA-based representation did not clearly outperform other representations, although summary metrics indicated that PCA-based representations performed somewhat better in our sample. Representations with more regions or components resulted in less accurate predictions. Population average atlases possibly cannot distinguish between functionally distinct areas when applied to patients with a glioma. This stresses the need to develop and validate methods for individual parcellations in the presence of lesions. Future studies may test if the observed small advantage of PCA-based representations generalizes to other data.

摘要

认知功能在考虑为脑肿瘤患者做出治疗决策时越来越受到重视,以实现个体化的肿瘤功能平衡。理想情况下,可以预测个体患者的认知功能,以在考虑这种平衡的情况下做出治疗决策。为了进行准确的预测,肿瘤位置的信息表示是至关重要的,但目前缺乏对这些表示的比较。因此,本研究比较了脑图谱和主成分分析(PCA)来表示体素级别的肿瘤位置。在使用不同的体素级别的肿瘤位置表示作为预测因子的情况下,为 246 名高级别胶质瘤患者预测了 8 项认知测试的术前认知功能。使用了 13 种不同的常用人群平均图谱、13 种随机生成的图谱和 13 种基于 PCA 的表示来表示体素级别的肿瘤位置。比较了不同表示之间的弹性网络预测,并与仅使用肿瘤体积的模型进行了比较。术前认知功能只能部分从肿瘤位置预测。不同表示的性能差异很大。与随机图谱相比,人群平均图谱并没有导致更好的预测。基于 PCA 的表示并没有明显优于其他表示,尽管综合指标表明在我们的样本中,基于 PCA 的表示的性能稍好一些。具有更多区域或组件的表示会导致预测精度降低。当应用于患有胶质瘤的患者时,人群平均图谱可能无法区分功能上不同的区域。这强调了需要开发和验证在存在病变的情况下对个体分区的方法。未来的研究可能会检验基于 PCA 的表示的观察到的小优势是否推广到其他数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f1/11329426/6af9b556e85c/12021_2024_9671_Figb_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f1/11329426/8a5fde89e660/12021_2024_9671_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f1/11329426/434f3a09d0a2/12021_2024_9671_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f1/11329426/10432ea93862/12021_2024_9671_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f1/11329426/6af9b556e85c/12021_2024_9671_Figb_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f1/11329426/8a5fde89e660/12021_2024_9671_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f1/11329426/434f3a09d0a2/12021_2024_9671_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f1/11329426/10432ea93862/12021_2024_9671_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f1/11329426/6af9b556e85c/12021_2024_9671_Figb_HTML.jpg

相似文献

[1]
Predicting Cognitive Functioning for Patients with a High-Grade Glioma: Evaluating Different Representations of Tumor Location in a Common Space.

Neuroinformatics. 2024-7

[2]
Cognitive functioning early after surgery of gliomas in eloquent areas.

J Neurosurg. 2012-8-31

[3]
Association between tumor location and neurocognitive functioning using tumor localization maps.

J Neurooncol. 2019-8-13

[4]
Brain network topology and its cognitive impact in adult glioma survivors.

Sci Rep. 2024-6-4

[5]
Predicting post-surgical functional status in high-grade glioma with resting state fMRI and machine learning.

J Neurooncol. 2024-8

[6]
Predicting disease progression in high-grade glioma with neuropsychological parameters: the value of personalized longitudinal assessment.

J Neurooncol. 2019-7-24

[7]
Relationships between tumor grade and neurocognitive functioning in patients with glioma of the left temporal lobe prior to surgical resection.

Neuro Oncol. 2015-4

[8]
Role of the default mode resting-state network for cognitive functioning in malignant glioma patients following multimodal treatment.

Neuroimage Clin. 2020

[9]
Cognitive functioning in long-term survivors of high-grade glioma.

J Neurosurg. 1994-2

[10]
Alterations in Functional Connectomics Associated With Neurocognitive Changes Following Glioma Resection.

Neurosurgery. 2021-2-16

引用本文的文献

[1]
From Tumor to Network: Functional Connectome Heterogeneity and Alterations in Brain Tumors-A Multimodal Neuroimaging Narrative Review.

Cancers (Basel). 2025-6-27

[2]
Predicting cognitive function 3 months after surgery in patients with a glioma.

Neurooncol Adv. 2025-5-2

[3]
Factor Structure and Validity of Composite Scores Resulting From a Computerized Cognitive Test Battery in Healthy Adults and Patients With Primary Brain Tumors.

Assessment. 2024-11-20

本文引用的文献

[1]
Impact of brain parcellation on prediction performance in models of cognition and demographics.

Hum Brain Mapp. 2024-2-1

[2]
Cognitive functioning in untreated glioma patients: The limited predictive value of clinical variables.

Neuro Oncol. 2024-4-5

[3]
A common low dimensional structure of cognitive impairment in stroke and brain tumors.

Neuroimage Clin. 2023

[4]
Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets.

Proc Natl Acad Sci U S A. 2023-2-28

[5]
The University of California San Francisco Preoperative Diffuse Glioma MRI Dataset.

Radiol Artif Intell. 2022-10-5

[6]
Ensemble Inversion for Brain Tumor Growth Models With Mass Effect.

IEEE Trans Med Imaging. 2023-4

[7]
Transcriptomic and connectomic correlates of differential spatial patterning among gliomas.

Brain. 2023-3-1

[8]
Presurgical predictors of early cognitive outcome after brain tumor resection in glioma patients.

Neuroimage Clin. 2022

[9]
Regional healthy brain activity, glioma occurrence and symptomatology.

Brain. 2022-10-21

[10]
Preoperative Brain Tumor Imaging: Models and Software for Segmentation and Standardized Reporting.

Front Neurol. 2022-7-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索