Suppr超能文献

具有质量效应的脑肿瘤生长模型的集成反演。

Ensemble Inversion for Brain Tumor Growth Models With Mass Effect.

出版信息

IEEE Trans Med Imaging. 2023 Apr;42(4):982-995. doi: 10.1109/TMI.2022.3221913. Epub 2023 Apr 3.

Abstract

We propose a method for extracting physics-based biomarkers from a single multiparametric Magnetic Resonance Imaging (mpMRI) scan bearing a glioma tumor. We account for mass effect, the deformation of brain parenchyma due to the growing tumor, which on its own is an important radiographic feature but its automatic quantification remains an open problem. In particular, we calibrate a partial differential equation (PDE) tumor growth model that captures mass effect, parameterized by a single scalar parameter, tumor proliferation, migration, while localizing the tumor initiation site. The single-scan calibration problem is severely ill-posed because the precancerous, healthy, brain anatomy is unknown. To address the ill-posedness, we introduce an ensemble inversion scheme that uses a number of normal subject brain templates as proxies for the healthy precancer subject anatomy. We verify our solver on a synthetic dataset and perform a retrospective analysis on a clinical dataset of 216 glioblastoma (GBM) patients. We analyze the reconstructions using our calibrated biophysical model and demonstrate that our solver provides both global and local quantitative measures of tumor biophysics and mass effect. We further highlight the improved performance in model calibration through the inclusion of mass effect in tumor growth models-including mass effect in the model leads to 10% increase in average dice coefficients for patients with significant mass effect. We further evaluate our model by introducing novel biophysics-based features and using them for survival analysis. Our preliminary analysis suggests that including such features can improve patient stratification and survival prediction.

摘要

我们提出了一种从带有脑胶质瘤肿瘤的单一多参数磁共振成像(mpMRI)扫描中提取基于物理的生物标志物的方法。我们考虑了质量效应,即由于肿瘤生长导致的脑实质变形,这本身就是一个重要的影像学特征,但它的自动量化仍然是一个悬而未决的问题。特别是,我们校准了一个捕获质量效应的偏微分方程(PDE)肿瘤生长模型,该模型由单个标量参数(肿瘤增殖、迁移)参数化,同时定位肿瘤起始部位。单扫描校准问题是严重不适定的,因为癌前、健康的大脑解剖结构是未知的。为了解决不适定性问题,我们引入了一种集合反演方案,该方案使用多个正常受试者脑模板作为健康癌前受试者解剖结构的代理。我们在合成数据集上验证了我们的求解器,并对 216 名胶质母细胞瘤(GBM)患者的临床数据集进行了回顾性分析。我们使用我们校准的生物物理模型分析重建结果,并证明我们的求解器提供了肿瘤生物物理和质量效应的全局和局部定量测量。我们进一步通过在肿瘤生长模型中包含质量效应来强调通过包含质量效应来提高模型校准的性能,在模型中包含质量效应可使具有显著质量效应的患者的平均骰子系数提高 10%。我们通过引入新的基于生物物理的特征并将其用于生存分析来进一步评估我们的模型。我们的初步分析表明,包含这些特征可以改善患者分层和生存预测。

相似文献

1
Ensemble Inversion for Brain Tumor Growth Models With Mass Effect.具有质量效应的脑肿瘤生长模型的集成反演。
IEEE Trans Med Imaging. 2023 Apr;42(4):982-995. doi: 10.1109/TMI.2022.3221913. Epub 2023 Apr 3.
2
Multiatlas Calibration of Biophysical Brain Tumor Growth Models with Mass Effect.具有质量效应的生物物理脑肿瘤生长模型的多图谱校准
Med Image Comput Comput Assist Interv. 2020 Oct;12262:551-560. doi: 10.1007/978-3-030-59713-9_53. Epub 2020 Sep 29.

本文引用的文献

1
Multiatlas Calibration of Biophysical Brain Tumor Growth Models with Mass Effect.具有质量效应的生物物理脑肿瘤生长模型的多图谱校准
Med Image Comput Comput Assist Interv. 2020 Oct;12262:551-560. doi: 10.1007/978-3-030-59713-9_53. Epub 2020 Sep 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验