文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

The University of California San Francisco Preoperative Diffuse Glioma MRI Dataset.

作者信息

Calabrese Evan, Villanueva-Meyer Javier E, Rudie Jeffrey D, Rauschecker Andreas M, Baid Ujjwal, Bakas Spyridon, Cha Soonmee, Mongan John T, Hess Christopher P

机构信息

Center for Intelligent Imaging (Ci), Department of Radiology & Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 (E.C., J.E.V.M., J.D.R., A.M.R., S.C., J.T.M., C.P.H.); and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pa (U.B., S.B.).

出版信息

Radiol Artif Intell. 2022 Oct 5;4(6):e220058. doi: 10.1148/ryai.220058. eCollection 2022 Nov.


DOI:10.1148/ryai.220058
PMID:36523646
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9748624/
Abstract

Informatics, MR Diffusion Tensor Imaging, MR Perfusion, MR Imaging, Neuro-Oncology, CNS, Brain/Brain Stem, Oncology, Radiogenomics, Radiology-Pathology Integration © RSNA, 2022.

摘要

相似文献

[1]
The University of California San Francisco Preoperative Diffuse Glioma MRI Dataset.

Radiol Artif Intell. 2022-10-5

[2]
The University of California San Francisco Adult Longitudinal Post-Treatment Diffuse Glioma MRI Dataset.

Radiol Artif Intell. 2024-7

[3]
Longitudinal Assessment of Posttreatment Diffuse Glioma Tissue Volumes with Three-dimensional Convolutional Neural Networks.

Radiol Artif Intell. 2022-8-3

[4]
MRI-based Identification and Classification of Major Intracranial Tumor Types by Using a 3D Convolutional Neural Network: A Retrospective Multi-institutional Analysis.

Radiol Artif Intell. 2021-8-11

[5]
Identifying preoperative language tracts and predicting postoperative functional recovery using HARDI q-ball fiber tractography in patients with gliomas.

J Neurosurg. 2015-12-11

[6]
Application of Advanced MR Imaging Techniques and the Evolving Role of PET/MR Imaging in Neuro-oncology.

PET Clin. 2013-4

[7]
Recent advances in imaging of brain tumors.

Indian J Cancer. 2009

[8]
Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features.

Radiology. 2016-9-16

[9]
Feasibility of Simulated Postcontrast MRI of Glioblastomas and Lower-Grade Gliomas by Using Three-dimensional Fully Convolutional Neural Networks.

Radiol Artif Intell. 2021-5-19

[10]
Advanced MR Imaging in Neuro-oncology.

Clin Neuroradiol. 2015-10

引用本文的文献

[1]
Spatial tumour characteristics as an indirect marker of metabolic dysregulation: evaluation for non-invasive IDH-genotyping of glioma using hybrid [18 F]FET-PET/MRI.

Eur J Nucl Med Mol Imaging. 2025-8-28

[2]
Bridging the clinical gap: Confidence informed IDH prediction in brain gliomas using MRI and deep learning.

Neurooncol Adv. 2025-7-25

[3]
OMT and tensor SVD-based deep learning model for segmentation and predicting genetic markers of glioma: A multicenter study.

Proc Natl Acad Sci U S A. 2025-7-15

[4]
Noninvasive assessment of glymphatic dysfunction and IDH mutation in glioma with DTI-ALPS and DTI metrics.

Quant Imaging Med Surg. 2025-6-6

[5]
Stochastic differential equation modeling approach for grading astrocytomas on brain MRI images.

Sci Rep. 2025-7-2

[6]
Anatomical distribution and prognostic heterogeneity in glioma: unique clinical features of occipital glioblastoma.

J Neurooncol. 2025-7-1

[7]
Predicting IDH Mutation in Glioma Patients Using Deep Learning Algorithms with Conformal Prediction.

J Imaging Inform Med. 2025-6-25

[8]
Integration of MRI radiomics and germline genetics to predict the IDH mutation status of gliomas.

NPJ Precis Oncol. 2025-6-16

[9]
Pitfalls and Best Practices in Evaluation of AI Algorithmic Biases in Radiology.

Radiology. 2025-5

[10]
A self-supervised multimodal deep learning approach to differentiate post-radiotherapy progression from pseudoprogression in glioblastoma.

Sci Rep. 2025-5-17

本文引用的文献

[1]
Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma.

Neurooncol Adv. 2022-4-22

[2]
Feasibility of Simulated Postcontrast MRI of Glioblastomas and Lower-Grade Gliomas by Using Three-dimensional Fully Convolutional Neural Networks.

Radiol Artif Intell. 2021-5-19

[3]
The 2021 WHO Classification of Tumors of the Central Nervous System: a summary.

Neuro Oncol. 2021-8-2

[4]
A fully automated artificial intelligence method for non-invasive, imaging-based identification of genetic alterations in glioblastomas.

Sci Rep. 2020-7-16

[5]
ACRIN 6684: Multicenter, phase II assessment of tumor hypoxia in newly diagnosed glioblastoma using magnetic resonance spectroscopy.

PLoS One. 2018-6-14

[6]
An anatomic transcriptional atlas of human glioblastoma.

Science. 2018-5-11

[7]
Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features.

Sci Data. 2017-9-5

[8]
Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy.

Neuro Oncol. 2017-5-1

[9]
ACRIN 6684: Assessment of Tumor Hypoxia in Newly Diagnosed Glioblastoma Using 18F-FMISO PET and MRI.

Clin Cancer Res. 2016-10-15

[10]
Repeatability of Standardized and Normalized Relative CBV in Patients with Newly Diagnosed Glioblastoma.

AJNR Am J Neuroradiol. 2015-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索