Suppr超能文献

大数据管理、数据登记和机器学习算法在优化创伤确定性安全手术中的作用:综述

The role of big data management, data registries, and machine learning algorithms for optimizing safe definitive surgery in trauma: a review.

作者信息

Pape Hans-Christoph, Starr Adam J, Gueorguiev Boyko, Wanner Guido A

机构信息

Department of Trauma Surgery, University Hospital of Zurich, Raemistr. 100, Zurich, 8091, Switzerland.

Department of Orthopaedic Surgery, Parkland Memorial Hospital, University of Texas Southwestern, 4900 Harry Hines Blvd, Dallas, TX, 75235, USA.

出版信息

Patient Saf Surg. 2024 Jun 20;18(1):22. doi: 10.1186/s13037-024-00404-0.

Abstract

Digital data processing has revolutionized medical documentation and enabled the aggregation of patient data across hospitals. Initiatives such as those from the AO Foundation about fracture treatment (AO Sammelstudie, 1986), the Major Trauma Outcome Study (MTOS) about survival, and the Trauma Audit and Research Network (TARN) pioneered multi-hospital data collection. Large trauma registries, like the German Trauma Registry (TR-DGU) helped improve evidence levels but were still constrained by predefined data sets and limited physiological parameters. The improvement in the understanding of pathophysiological reactions substantiated that decision making about fracture care led to development of patient's tailored dynamic approaches like the Safe Definitive Surgery algorithm. In the future, artificial intelligence (AI) may provide further steps by potentially transforming fracture recognition and/or outcome prediction. The evolution towards flexible decision making and AI-driven innovations may be of further help. The current manuscript summarizes the development of big data from local databases and subsequent trauma registries to AI-based algorithms, such as Parkland Trauma Mortality Index and the IBM Watson Pathway Explorer.

摘要

数字数据处理彻底改变了医学文档记录,并实现了跨医院的患者数据汇总。诸如AO基金会关于骨折治疗的研究(AO Sammelstudie,1986年)、关于生存率的重大创伤结局研究(MTOS)以及创伤审计与研究网络(TARN)等项目开创了多医院数据收集的先河。大型创伤登记处,如德国创伤登记处(TR-DGU),有助于提高证据水平,但仍受预定义数据集和有限生理参数的限制。对病理生理反应理解的提高证实,骨折护理决策促使了如安全确定性手术算法等针对患者的动态方法的发展。未来,人工智能(AI)可能通过潜在地改变骨折识别和/或结局预测提供进一步的进展。向灵活决策和人工智能驱动创新的发展可能会提供更多帮助。当前手稿总结了从本地数据库和随后的创伤登记处到基于人工智能的算法(如帕克兰创伤死亡率指数和IBM Watson Pathway Explorer)的大数据发展历程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/11191186/8e4c8961d8f9/13037_2024_404_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验