Suppr超能文献

群体结构如何影响交叉验证中的基因组选择准确性:对实际育种的启示

How Population Structure Impacts Genomic Selection Accuracy in Cross-Validation: Implications for Practical Breeding.

作者信息

Werner Christian R, Gaynor R Chris, Gorjanc Gregor, Hickey John M, Kox Tobias, Abbadi Amine, Leckband Gunhild, Snowdon Rod J, Stahl Andreas

机构信息

The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre, Midlothian, United Kingdom.

NPZ Innovation GmbH, Holtsee, Germany.

出版信息

Front Plant Sci. 2020 Dec 16;11:592977. doi: 10.3389/fpls.2020.592977. eCollection 2020.

Abstract

Over the last two decades, the application of genomic selection has been extensively studied in various crop species, and it has become a common practice to report prediction accuracies using cross validation. However, genomic prediction accuracies obtained from random cross validation can be strongly inflated due to population or family structure, a characteristic shared by many breeding populations. An understanding of the effect of population and family structure on prediction accuracy is essential for the successful application of genomic selection in plant breeding programs. The objective of this study was to make this effect and its implications for practical breeding programs comprehensible for breeders and scientists with a limited background in quantitative genetics and genomic selection theory. We, therefore, compared genomic prediction accuracies obtained from different random cross validation approaches and within-family prediction in three different prediction scenarios. We used a highly structured population of 940 hybrids coming from 46 testcross families and two subpopulations. Our demonstrations show how genomic prediction accuracies obtained from among-family predictions in random cross validation and within-family predictions capture different measures of prediction accuracy. While among-family prediction accuracy measures prediction accuracy of both the parent average component and the Mendelian sampling term, within-family prediction only measures how accurately the Mendelian sampling term can be predicted. With this paper we aim to foster a critical approach to different measures of genomic prediction accuracy and a careful analysis of values observed in genomic selection experiments and reported in literature.

摘要

在过去二十年中,基因组选择在各种作物物种中得到了广泛研究,使用交叉验证来报告预测准确性已成为一种常见做法。然而,由于群体或家系结构,从随机交叉验证获得的基因组预测准确性可能会被严重高估,这是许多育种群体共有的特征。了解群体和家系结构对预测准确性的影响对于基因组选择在植物育种计划中的成功应用至关重要。本研究的目的是让定量遗传学和基因组选择理论背景有限的育种者和科学家能够理解这种影响及其对实际育种计划的意义。因此,我们在三种不同的预测场景中比较了从不同随机交叉验证方法和家系内预测获得的基因组预测准确性。我们使用了一个高度结构化的群体,其中包含来自46个测交家系和两个亚群的940个杂种。我们的论证展示了从随机交叉验证中的家系间预测和家系内预测获得的基因组预测准确性如何捕捉不同的预测准确性度量。虽然家系间预测准确性衡量亲本平均成分和孟德尔抽样项的预测准确性,但家系内预测仅衡量孟德尔抽样项能够被预测的准确程度。通过本文,我们旨在倡导对基因组预测准确性的不同度量采取批判性方法,并仔细分析在基因组选择实验中观察到并在文献中报道的值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eeb/7772221/1818fd5d32c0/fpls-11-592977-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验