Suppr超能文献

深度学习重建与迭代算法在重症监护患者中的 CT 有效剂量和图像质量比较

Computed Tomography Effective Dose and Image Quality in Deep Learning Image Reconstruction in Intensive Care Patients Compared to Iterative Algorithms.

机构信息

Department of Radiology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.

出版信息

Tomography. 2024 Jun 7;10(6):912-921. doi: 10.3390/tomography10060069.

Abstract

Deep learning image reconstruction (DLIR) algorithms employ convolutional neural networks (CNNs) for CT image reconstruction to produce CT images with a very low noise level, even at a low radiation dose. The aim of this study was to assess whether the DLIR algorithm reduces the CT effective dose (ED) and improves CT image quality in comparison with filtered back projection (FBP) and iterative reconstruction (IR) algorithms in intensive care unit (ICU) patients. We identified all consecutive patients referred to the ICU of a single hospital who underwent at least two consecutive chest and/or abdominal contrast-enhanced CT scans within a time period of 30 days using DLIR and subsequently the FBP or IR algorithm (Advanced Modeled Iterative Reconstruction [ADMIRE] model-based algorithm or Adaptive Iterative Dose Reduction 3D [AIDR 3D] hybrid algorithm) for CT image reconstruction. The radiation ED, noise level, and signal-to-noise ratio (SNR) were compared between the different CT scanners. The non-parametric Wilcoxon test was used for statistical comparison. Statistical significance was set at < 0.05. A total of 83 patients (mean age, 59 ± 15 years [standard deviation]; 56 men) were included. DLIR vs. FBP reduced the ED (18.45 ± 13.16 mSv vs. 22.06 ± 9.55 mSv, < 0.05), while DLIR vs. FBP and vs. ADMIRE and AIDR 3D IR algorithms reduced image noise (8.45 ± 3.24 vs. 14.85 ± 2.73 vs. 14.77 ± 32.77 and 11.17 ± 32.77, < 0.05) and increased the SNR (11.53 ± 9.28 vs. 3.99 ± 1.23 vs. 5.84 ± 2.74 and 3.58 ± 2.74, < 0.05). CT scanners employing DLIR improved the SNR compared to CT scanners using FBP or IR algorithms in ICU patients despite maintaining a reduced ED.

摘要

深度学习图像重建(DLIR)算法使用卷积神经网络(CNN)进行 CT 图像重建,以产生噪声水平极低的 CT 图像,即使在低辐射剂量下也是如此。本研究旨在评估与滤波反投影(FBP)和迭代重建(IR)算法相比,DLIR 算法是否可以降低重症监护病房(ICU)患者的 CT 有效剂量(ED)并改善 CT 图像质量。我们在一家医院的 ICU 中连续评估了所有连续患者,他们在 30 天内至少连续进行了两次胸部和/或腹部增强 CT 扫描,使用 DLIR 后,随后使用 FBP 或 IR 算法(基于高级模型迭代重建[ADMIRE]模型的算法或自适应迭代剂量减少 3D[AIDR 3D]混合算法)进行 CT 图像重建。比较了不同 CT 扫描仪之间的辐射 ED、噪声水平和信噪比(SNR)。使用非参数 Wilcoxon 检验进行统计比较。统计显著性设置为 < 0.05。共纳入 83 例患者(平均年龄 59 ± 15 岁[标准差];56 名男性)。与 FBP 相比,DLIR 降低了 ED(18.45 ± 13.16 mSv 与 22.06 ± 9.55 mSv, < 0.05),而与 FBP 和 ADMIRE 与 AIDR 3D IR 算法相比,DLIR 降低了图像噪声(8.45 ± 3.24 与 14.85 ± 2.73 与 14.77 ± 32.77 与 11.17 ± 32.77, < 0.05)并提高了 SNR(11.53 ± 9.28 与 3.99 ± 1.23 与 5.84 ± 2.74 与 3.58 ± 2.74, < 0.05)。与使用 FBP 或 IR 算法的 CT 扫描仪相比,在 ICU 患者中,使用 DLIR 的 CT 扫描仪提高了 SNR,同时保持了较低的 ED。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2626/11209234/ee199c230b20/tomography-10-00069-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验