Suppr超能文献

深度学习在 CT 图像重建中的应用:技术原理与临床前景。

Deep Learning Image Reconstruction for CT: Technical Principles and Clinical Prospects.

机构信息

From the Department of Radiology (L.R.K., D.M., A.S.W., V.S., D.F., M.J.W.) and Stanford Cardiovascular Institute (D.M., D.F., M.J.W.), Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305-5105; Department of Radiology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wis (T.P.S.); Department of Radiology, Erasmus Medical Center, Rotterdam, the Netherlands (N.R.v.d.W.); Clinical Science Western Europe, Philips Healthcare, Best, the Netherlands (N.R.v.d.W.); and Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands (A.J.v.d.M.).

出版信息

Radiology. 2023 Mar;306(3):e221257. doi: 10.1148/radiol.221257. Epub 2023 Jan 31.

Abstract

Filtered back projection (FBP) has been the standard CT image reconstruction method for 4 decades. A simple, fast, and reliable technique, FBP has delivered high-quality images in several clinical applications. However, with faster and more advanced CT scanners, FBP has become increasingly obsolete. Higher image noise and more artifacts are especially noticeable in lower-dose CT imaging using FBP. This performance gap was partly addressed by model-based iterative reconstruction (MBIR). Yet, its "plastic" image appearance and long reconstruction times have limited widespread application. Hybrid iterative reconstruction partially addressed these limitations by blending FBP with MBIR and is currently the state-of-the-art reconstruction technique. In the past 5 years, deep learning reconstruction (DLR) techniques have become increasingly popular. DLR uses artificial intelligence to reconstruct high-quality images from lower-dose CT faster than MBIR. However, the performance of DLR algorithms relies on the quality of data used for model training. Higher-quality training data will become available with photon-counting CT scanners. At the same time, spectral data would greatly benefit from the computational abilities of DLR. This review presents an overview of the principles, technical approaches, and clinical applications of DLR, including metal artifact reduction algorithms. In addition, emerging applications and prospects are discussed.

摘要

滤波反投影(FBP)已经成为 40 年来 CT 图像重建的标准方法。FBP 是一种简单、快速、可靠的技术,已经在多个临床应用中提供了高质量的图像。然而,随着更快、更先进的 CT 扫描仪的出现,FBP 已经变得越来越过时。在使用 FBP 进行低剂量 CT 成像时,图像噪声和伪影更高,这一点尤为明显。基于模型的迭代重建(MBIR)在一定程度上解决了这一性能差距。然而,其“塑性”的图像外观和较长的重建时间限制了其广泛应用。混合迭代重建通过将 FBP 与 MBIR 混合,部分解决了这些限制,目前是最先进的重建技术。在过去的 5 年中,深度学习重建(DLR)技术变得越来越流行。DLR 使用人工智能从低剂量 CT 更快地重建高质量图像,速度超过 MBIR。然而,DLR 算法的性能依赖于用于模型训练的数据质量。随着光子计数 CT 扫描仪的出现,将提供更高质量的训练数据。同时,光谱数据将极大地受益于 DLR 的计算能力。本文综述了 DLR 的原理、技术方法和临床应用,包括金属伪影减少算法。此外,还讨论了新兴的应用和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc05/9968777/e1c7a6ac14a0/radiol.221257.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验