Suppr超能文献

利用主成分分析、GIS 和机器学习技术评估干旱地区的地下水质量。

Assessment of groundwater quality in arid regions utilizing principal component analysis, GIS, and machine learning techniques.

机构信息

Civil Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt; Civil Engineering Department, College of Engineering, Shaqra University, Dawadmi 11911, Saudi Arabia.

Civil Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt.

出版信息

Mar Pollut Bull. 2024 Aug;205:116645. doi: 10.1016/j.marpolbul.2024.116645. Epub 2024 Jun 25.

Abstract

Assessing water quality in arid regions is vital due to scarce resources, impacting health and sustainable management.This study examines groundwater quality in Assuit Governorate, Egypt, using Principal Component Analysis, GIS, and Machine Learning Techniques. Data from 217 wells across 12 parameters were analyzed, including TDS, EC, Cl, Fe, Ca, Mg, Na, SO, Mn, HCO, K, and pH. The Water Quality Index (WQI) was calculated, and ArcGIS mapped its spatial distribution. Machine learning algorithms, including Ridge Regression, XGBoost, Decision Tree, Random Forest, and K-Nearest Neighbors, were used for predictive analysis. Higher concentrations of Na, K, Ca, Mg, Mn, and Fe were correlated with industrial and densely populated areas. Most samples exhibited excellent or good quality, with a small percentage unsuitable for consumption. Ridge Regression showed the lowest MAPE rates (0.22 % training, 0.26 % in testing). This research highlights the importance of advanced machine learning for sustainable groundwater management in arid regions. Thus, our results could provide valuable assistance to both national and local authorities involved in water management decisions, particularly for water resource managers and decision-makers. This information can aid in the development of regulations aimed at safeguarding and sustainably managing groundwater resources, which are essential for the overall prosperity of the country.

摘要

由于资源稀缺,评估干旱地区的水质至关重要,这会影响健康和可持续管理。本研究采用主成分分析、地理信息系统和机器学习技术,研究了埃及阿西尤特省的地下水水质。分析了来自 12 个参数的 217 口井的数据,包括 TDS、EC、Cl、Fe、Ca、Mg、Na、SO、Mn、HCO、K 和 pH。计算了水质指数 (WQI),并在 ArcGIS 上绘制了其空间分布。使用 Ridge Regression、XGBoost、Decision Tree、Random Forest 和 K-Nearest Neighbors 等机器学习算法进行预测分析。较高浓度的 Na、K、Ca、Mg、Mn 和 Fe 与工业和人口密集地区有关。大多数样本表现出优良或良好的水质,只有一小部分不适合饮用。Ridge Regression 显示出最低的 MAPE 率(训练时为 0.22%,测试时为 0.26%)。这项研究强调了先进的机器学习在干旱地区可持续地下水管理中的重要性。因此,我们的结果可以为参与水资源管理决策的国家和地方当局提供有价值的帮助,特别是对水资源管理者和决策者。这些信息可以帮助制定旨在保护和可持续管理地下水资源的法规,这对国家的整体繁荣至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验