Suppr超能文献

利用人工智能方法提高医疗环境中脑肿瘤自动检测的准确性。

Enhancing Automated Brain Tumor Detection Accuracy Using Artificial Intelligence Approaches for Healthcare Environments.

作者信息

Abdusalomov Akmalbek, Rakhimov Mekhriddin, Karimberdiyev Jakhongir, Belalova Guzal, Cho Young Im

机构信息

Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.

Department of Artificial Intelligence, Tashkent University of Information Technologies Named after Muhammad Al-Khwarizmi, Tashkent 100200, Uzbekistan.

出版信息

Bioengineering (Basel). 2024 Jun 19;11(6):627. doi: 10.3390/bioengineering11060627.

Abstract

Medical imaging and deep learning models are essential to the early identification and diagnosis of brain cancers, facilitating timely intervention and improving patient outcomes. This research paper investigates the integration of YOLOv5, a state-of-the-art object detection framework, with non-local neural networks (NLNNs) to improve brain tumor detection's robustness and accuracy. This study begins by curating a comprehensive dataset comprising brain MRI scans from various sources. To facilitate effective fusion, the YOLOv5 and NLNNs, K-means+, and spatial pyramid pooling fast+ (SPPF+) modules are integrated within a unified framework. The brain tumor dataset is used to refine the YOLOv5 model through the application of transfer learning techniques, adapting it specifically to the task of tumor detection. The results indicate that the combination of YOLOv5 and other modules results in enhanced detection capabilities in comparison to the utilization of YOLOv5 exclusively, proving recall rates of 86% and 83% respectively. Moreover, the research explores the interpretability aspect of the combined model. By visualizing the attention maps generated by the NLNNs module, the regions of interest associated with tumor presence are highlighted, aiding in the understanding and validation of the decision-making procedure of the methodology. Additionally, the impact of hyperparameters, such as NLNNs kernel size, fusion strategy, and training data augmentation, is investigated to optimize the performance of the combined model.

摘要

医学成像和深度学习模型对于脑癌的早期识别和诊断至关重要,有助于及时干预并改善患者预后。本研究论文探讨了将最先进的目标检测框架YOLOv5与非局部神经网络(NLNNs)相结合,以提高脑肿瘤检测的鲁棒性和准确性。本研究首先整理了一个包含来自各种来源的脑部MRI扫描的综合数据集。为了实现有效的融合,将YOLOv5和NLNNs、K-means+以及空间金字塔池化快速+(SPPF+)模块集成在一个统一的框架内。通过应用迁移学习技术,使用脑肿瘤数据集对YOLOv5模型进行优化,使其专门适用于肿瘤检测任务。结果表明,与单独使用YOLOv5相比,YOLOv5与其他模块的组合具有更强的检测能力,召回率分别为86%和83%。此外,该研究还探讨了组合模型的可解释性方面。通过可视化NLNNs模块生成的注意力图,突出显示了与肿瘤存在相关的感兴趣区域,有助于理解和验证该方法的决策过程。此外,还研究了超参数(如NLNNs内核大小、融合策略和训练数据增强)的影响,以优化组合模型的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/765a/11201188/149c30f142d5/bioengineering-11-00627-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验