Buriboev Abror Shavkatovich, Khashimov Ahmadjon, Abduvaitov Akmal, Jeon Heung Seok
Department of AI-Software, Gachon University, Seongnam-si 13120, Republic of Korea.
Department of Digital Technologies and Mathematics, Kokand University, Kokand 150700, Uzbekistan.
Sensors (Basel). 2024 Dec 2;24(23):7703. doi: 10.3390/s24237703.
This paper presents an enhanced approach to kidney segmentation using a modified CLAHE preprocessing method, aimed at improving image clarity and CNN performance on the KiTS19 dataset. To assess the impact of the modified CLAHE method, we conducted quality evaluations using the BRISQUE metric, comparing the original, standard CLAHE and modified CLAHE versions of the dataset. The BRISQUE score decreased from 28.8 in the original dataset to 21.1 with the modified CLAHE method, indicating a significant improvement in image quality. Furthermore, CNN segmentation accuracy rose from 0.951 with the original dataset to 0.996 with the modified CLAHE method, outperforming the accuracy achieved with standard CLAHE preprocessing (0.969). These results highlight the benefits of the modified CLAHE method in refining image quality and enhancing segmentation performance. This study highlights the value of adaptive preprocessing in medical imaging workflows and shows that CNN-based kidney segmentation accuracy may be greatly increased by altering conventional CLAHE. Our method provides insightful information on optimizing preprocessing for medical imaging applications, leading to more accurate and dependable segmentation results for better clinical diagnosis.
本文提出了一种使用改进的对比度受限自适应直方图均衡化(CLAHE)预处理方法进行肾脏分割的增强方法,旨在提高KiTS19数据集上的图像清晰度和卷积神经网络(CNN)性能。为了评估改进的CLAHE方法的影响,我们使用BRISQUE指标进行了质量评估,比较了数据集的原始版本、标准CLAHE版本和改进的CLAHE版本。BRISQUE分数从原始数据集中的28.8降至改进的CLAHE方法下的21.1,表明图像质量有显著提高。此外,CNN分割准确率从原始数据集的0.951提高到改进的CLAHE方法下的0.996,优于标准CLAHE预处理所达到的准确率(0.969)。这些结果突出了改进的CLAHE方法在改善图像质量和增强分割性能方面的优势。本研究强调了自适应预处理在医学成像工作流程中的价值,并表明通过改变传统的CLAHE可以大大提高基于CNN的肾脏分割准确率。我们的方法为优化医学成像应用的预处理提供了有见地的信息,从而为更好的临床诊断带来更准确、可靠的分割结果。