Suppr超能文献

用于医学成像数据中精确肿瘤检测的混合深度学习方法。

Hybrid Deep Learning Approach for Accurate Tumor Detection in Medical Imaging Data.

作者信息

Cifci Mehmet Akif, Hussain Sadiq, Canatalay Peren Jerfi

机构信息

The Institute of Computer Technology, Tu Wien University, 1040 Vienna, Austria.

Department of Computer Engineering, Bandirma Onyedi Eylul University, Balikesir 10200, Turkey.

出版信息

Diagnostics (Basel). 2023 Mar 8;13(6):1025. doi: 10.3390/diagnostics13061025.

Abstract

The automated extraction of critical information from electronic medical records, such as oncological medical events, has become increasingly important with the widespread use of electronic health records. However, extracting tumor-related medical events can be challenging due to their unique characteristics. To address this difficulty, we propose a novel approach that utilizes Generative Adversarial Networks (GANs) for data augmentation and pseudo-data generation algorithms to improve the model's transfer learning skills for various tumor-related medical events. Our approach involves a two-stage pre-processing and model training process, where the data is cleansed, normalized, and augmented using pseudo-data. We evaluate our approach using the i2b2/UTHealth 2010 dataset and observe promising results in extracting primary tumor site size, tumor size, and metastatic site information. The proposed method has significant implications for healthcare and medical research as it can extract vital information from electronic medical records for oncological medical events.

摘要

随着电子健康记录的广泛使用,从电子病历中自动提取关键信息,如肿瘤医学事件,变得越来越重要。然而,由于肿瘤相关医学事件的独特特征,提取这些事件可能具有挑战性。为了解决这一难题,我们提出了一种新颖的方法,该方法利用生成对抗网络(GAN)进行数据增强和伪数据生成算法,以提高模型对各种肿瘤相关医学事件的迁移学习能力。我们的方法包括一个两阶段的预处理和模型训练过程,其中数据通过伪数据进行清理、归一化和增强。我们使用i2b2/UTHealth 2010数据集评估我们的方法,并在提取原发肿瘤部位大小、肿瘤大小和转移部位信息方面观察到了有希望的结果。所提出的方法对医疗保健和医学研究具有重要意义,因为它可以从电子病历中提取肿瘤医学事件的关键信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85a8/10047127/ae9a26f5a019/diagnostics-13-01025-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验