Suppr超能文献

使用深度神经网络从光学相干断层扫描图像中对三维癌症类器官进行分割和多时间点跟踪

Segmentation and Multi-Timepoint Tracking of 3D Cancer Organoids from Optical Coherence Tomography Images Using Deep Neural Networks.

作者信息

Branciforti Francesco, Salvi Massimo, D'Agostino Filippo, Marzola Francesco, Cornacchia Sara, De Titta Maria Olimpia, Mastronuzzi Girolamo, Meloni Isotta, Moschetta Miriam, Porciani Niccolò, Sciscenti Fabrizio, Spertini Alessandro, Spilla Andrea, Zagaria Ilenia, Deloria Abigail J, Deng Shiyu, Haindl Richard, Szakacs Gergely, Csiszar Agnes, Liu Mengyang, Drexler Wolfgang, Molinari Filippo, Meiburger Kristen M

机构信息

Biolab, PolitoBIOMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.

Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria.

出版信息

Diagnostics (Basel). 2024 Jun 8;14(12):1217. doi: 10.3390/diagnostics14121217.

Abstract

Recent years have ushered in a transformative era in in vitro modeling with the advent of organoids, three-dimensional structures derived from stem cells or patient tumor cells. Still, fully harnessing the potential of organoids requires advanced imaging technologies and analytical tools to quantitatively monitor organoid growth. Optical coherence tomography (OCT) is a promising imaging modality for organoid analysis due to its high-resolution, label-free, non-destructive, and real-time 3D imaging capabilities, but accurately identifying and quantifying organoids in OCT images remain challenging due to various factors. Here, we propose an automatic deep learning-based pipeline with convolutional neural networks that synergistically includes optimized preprocessing steps, the implementation of a state-of-the-art deep learning model, and ad-hoc postprocessing methods, showcasing good generalizability and tracking capabilities over an extended period of 13 days. The proposed tracking algorithm thoroughly documents organoid evolution, utilizing reference volumes, a dual branch analysis, key attribute evaluation, and probability scoring for match identification. The proposed comprehensive approach enables the accurate tracking of organoid growth and morphological changes over time, advancing organoid analysis and serving as a solid foundation for future studies for drug screening and tumor drug sensitivity detection based on organoids.

摘要

近年来,随着类器官(由干细胞或患者肿瘤细胞衍生而来的三维结构)的出现,体外建模迎来了一个变革性的时代。然而,要充分发挥类器官的潜力,需要先进的成像技术和分析工具来定量监测类器官的生长。光学相干断层扫描(OCT)因其具有高分辨率、无标记、非破坏性和实时三维成像能力,是一种很有前景的用于类器官分析的成像方式,但由于各种因素,在OCT图像中准确识别和量化类器官仍然具有挑战性。在此,我们提出了一种基于深度学习的自动流程,该流程结合了卷积神经网络,协同包括优化的预处理步骤、最先进深度学习模型的实施以及特殊的后处理方法,在长达13天的时间内展现出良好的通用性和跟踪能力。所提出的跟踪算法利用参考体积、双分支分析、关键属性评估和概率评分进行匹配识别,全面记录了类器官的演变过程。所提出的综合方法能够准确跟踪类器官随时间推移的生长和形态变化,推动了类器官分析的发展,并为未来基于类器官的药物筛选和肿瘤药物敏感性检测研究奠定了坚实基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baa8/11203156/c30486cb308a/diagnostics-14-01217-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验