Suppr超能文献

用于癌症药理学的细胞分辨率下三维类器官动力学的高通量反卷积分析

: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology.

作者信息

Mukashyaka Patience, Kumar Pooja, Mellert David J, Nicholas Shadae, Noorbakhsh Javad, Brugiolo Mattia, Anczukow Olga, Liu Edison T, Chuang Jeffrey H

机构信息

The Jackson Laboratory for Genomic Medicine, Farmington, CT.

University of Connecticut Health Center, Department of Genetics and Genome Sciences, Farmington, CT.

出版信息

bioRxiv. 2023 Mar 6:2023.03.03.531019. doi: 10.1101/2023.03.03.531019.

Abstract

Three-dimensional (3D) culture models, such as organoids, are flexible systems to interrogate cellular growth and morphology, multicellular spatial architecture, and cell interactions in response to drug treatment. However, new computational methods to segment and analyze 3D models at cellular resolution with sufficiently high throughput are needed to realize these possibilities. Here we report (Cell and Organoid Segmentation), an accurate, high throughput image analysis pipeline for 3D organoid and nuclear segmentation analysis. segments organoids in 3D using classical algorithms and segments nuclei using a Stardist-3D convolutional neural network which we trained on a manually annotated dataset of 3,862 cells from 36 organoids confocally imaged at 5 μm z-resolution. To evaluate the capabilities of we then analyzed 74,450 organoids with 1.65 million cells, from multiple experiments on triple negative breast cancer organoids containing clonal mixtures with complex cisplatin sensitivities. was able to accurately distinguish ratios of distinct fluorescently labelled cell populations in organoids, with ≤3% deviation from the seeding ratios in each well and was effective for both fluorescently labelled nuclei and independent DAPI stained datasets. was able to recapitulate traditional luminescence-based drug response quantifications by analyzing 3D images, including parallel analysis of multiple cancer clones in the same well. Moreover, was able to identify organoid and nuclear morphology feature changes associated with treatment. Finally, enables 3D analysis of cell spatial relationships, which we used to detect ecological affinity between cancer cells beyond what arises from local cell division or organoid composition. provides powerful tools to perform high throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.

摘要

三维(3D)培养模型,如类器官,是用于研究细胞生长和形态、多细胞空间结构以及细胞对药物治疗反应的灵活系统。然而,需要新的计算方法以足够高的通量在细胞分辨率下分割和分析3D模型,以实现这些可能性。在这里,我们报告了(细胞和类器官分割),这是一种用于3D类器官和细胞核分割分析的准确、高通量图像分析流程。使用经典算法对3D类器官进行分割,并使用Stardist-3D卷积神经网络对细胞核进行分割,我们在一个手动注释的数据集上对其进行了训练,该数据集包含来自36个类器官的3862个细胞,以5μm的z分辨率进行共聚焦成像。为了评估的能力,我们随后分析了来自多个实验的74450个类器官和165万个细胞,这些实验涉及含有具有复杂顺铂敏感性的克隆混合物的三阴性乳腺癌类器官。能够准确区分类器官中不同荧光标记细胞群体的比例,与每个孔中的接种比例偏差≤3%,并且对荧光标记的细胞核和独立的DAPI染色数据集均有效。通过分析3D图像,能够重现基于传统发光的药物反应定量分析,包括对同一孔中多个癌症克隆的平行分析。此外,能够识别与治疗相关的类器官和细胞核形态特征变化。最后,能够对细胞空间关系进行3D分析,我们用它来检测癌细胞之间的生态亲和力,这种亲和力超出了局部细胞分裂或类器官组成所产生的范围。为基于3D成像的类器官药理测试和生物学研究提供了强大的高通量分析工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db8e/10028797/944d650e8af8/nihpp-2023.03.03.531019v1-f0007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验