Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China.
ACS Nano. 2024 May 14;18(19):12049-12095. doi: 10.1021/acsnano.4c02265. Epub 2024 May 1.
Cancer, as one of the leading causes of death worldwide, drives the advancement of cutting-edge technologies for cancer treatment. Transition-metal-based nanozymes emerge as promising therapeutic nanodrugs that provide a reference for cancer therapy. In this review, we present recent breakthrough nanozymes for cancer treatment. First, we comprehensively outline the preparation strategies involved in creating transition-metal-based nanozymes, including hydrothermal method, solvothermal method, chemical reduction method, biomimetic mineralization method, and sol-gel method. Subsequently, we elucidate the catalytic mechanisms (catalase (CAT)-like activities), peroxidase (POD)-like activities), oxidase (OXD)-like activities) and superoxide dismutase (SOD)-like activities) of transition-metal-based nanozymes along with their activity regulation strategies such as morphology control, size manipulation, modulation, composition adjustment and surface modification under environmental stimulation. Furthermore, we elaborate on the diverse applications of transition-metal-based nanozymes in anticancer therapies encompassing radiotherapy (RT), chemodynamic therapy (CDT), photodynamic therapy (PDT), photothermal therapy (PTT), sonodynamic therapy (SDT), immunotherapy, and synergistic therapy. Finally, the challenges faced by transition-metal-based nanozymes are discussed alongside future research directions. The purpose of this review is to offer scientific guidance that will enhance the clinical applications of nanozymes based on transition metals.
癌症作为全球主要死因之一,推动了癌症治疗的先进技术的发展。基于过渡金属的纳米酶作为有前途的治疗性纳米药物出现,为癌症治疗提供了参考。在这篇综述中,我们介绍了最近在癌症治疗方面的突破性纳米酶。首先,我们全面概述了制备基于过渡金属的纳米酶的策略,包括水热法、溶剂热法、化学还原法、仿生矿化法和溶胶-凝胶法。随后,我们阐述了基于过渡金属的纳米酶的催化机制(过氧化氢酶(CAT)样活性、过氧化物酶(POD)样活性、氧化酶(OXD)样活性和超氧化物歧化酶(SOD)样活性)及其在环境刺激下的活性调节策略,如形态控制、尺寸操纵、调制、组成调整和表面修饰。此外,我们详细介绍了基于过渡金属的纳米酶在癌症治疗中的多种应用,包括放射治疗(RT)、化学动力学治疗(CDT)、光动力治疗(PDT)、光热治疗(PTT)、声动力治疗(SDT)、免疫治疗和协同治疗。最后,讨论了基于过渡金属的纳米酶所面临的挑战以及未来的研究方向。本综述的目的是提供科学指导,以增强基于过渡金属的纳米酶的临床应用。
Int J Biol Macromol. 2025-5
Materials (Basel). 2024-6-13
Acta Biomater. 2025-1-1
Anal Bioanal Chem. 2024-11
Int J Mol Sci. 2023-10-28
Biomolecules. 2021-7-11
Mater Today Bio. 2025-6-21