DAWAKO Medtech S.L., Parc Cientìfic de la Universitat de Valencia, Calle del Catedratic Agustín Escardino Benlloch, 9, 46980 Paterna, Spain.
Investigation Centre Endocrinology and Nutrition, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain.
Nutrients. 2024 Jun 8;16(12):1806. doi: 10.3390/nu16121806.
(1) Background: The aim was to validate an AI-based system compared to the classic method of reading ultrasound images of the rectus femur (RF) muscle in a real cohort of patients with disease-related malnutrition. (2) Methods: One hundred adult patients with DRM aged 18 to 85 years were enrolled. The risk of DRM was assessed by the Global Leadership Initiative on Malnutrition (GLIM). The variation, reproducibility, and reliability of measurements for the RF subcutaneous fat thickness (SFT), muscle thickness (MT), and cross-sectional area (CSA), were measured conventionally with the incorporated tools of a portable ultrasound imaging device (method A) and compared with the automated quantification of the ultrasound imaging system (method B). (3) Results: Measurements obtained using method A (i.e., conventionally) and method B (i.e., raw images analyzed by AI), showed similar values with no significant differences in absolute values and coefficients of variation, 58.39-57.68% for SFT, 30.50-28.36% for MT, and 36.50-36.91% for CSA, respectively. The Intraclass Correlation Coefficient (ICC) for reliability and consistency analysis between methods A and B showed correlations of 0.912 and 95% CI [0.872-0.940] for SFT, 0.960 and 95% CI [0.941-0.973] for MT, and 0.995 and 95% CI [0.993-0.997] for CSA; the Bland-Altman Analysis shows that the spread of points is quite uniform around the bias lines with no evidence of strong bias for any variable. (4) Conclusions: The study demonstrated the consistency and reliability of this new automatic system based on machine learning and AI for the quantification of ultrasound imaging of the muscle architecture parameters of the rectus femoris muscle compared with the conventional method of measurement.
(1) 背景:本研究旨在验证一种基于人工智能的系统,该系统与经典的股直肌(RF)超声图像阅读方法相比,在一组与疾病相关的营养不良的真实患者队列中具有更高的准确性。(2) 方法:本研究纳入了 100 名年龄在 18 至 85 岁之间的患有 DRM 的成年患者。采用全球营养不良领导倡议(GLIM)评估 DRM 的风险。使用便携式超声成像设备的内置工具(方法 A)对 RF 皮下脂肪厚度(SFT)、肌肉厚度(MT)和横截面积(CSA)进行常规测量,并与超声成像系统的自动量化(方法 B)进行比较,以评估测量的变异性、可重复性和可靠性。(3) 结果:使用方法 A(即常规方法)和方法 B(即 AI 分析原始图像)获得的测量值具有相似的值,绝对数值和变异系数没有显著差异,SFT 分别为 58.39-57.68%、MT 为 30.50-28.36%和 CSA 为 36.50-36.91%。方法 A 和方法 B 之间可靠性和一致性分析的组内相关系数(ICC)显示,SFT 的相关性为 0.912 和 95%置信区间[0.872-0.940]、MT 为 0.960 和 95%置信区间[0.941-0.973],CSA 为 0.995 和 95%置信区间[0.993-0.997];Bland-Altman 分析表明,各变量的偏差线周围点的分布相当均匀,没有明显的强偏差。(4) 结论:本研究表明,与传统的测量方法相比,基于机器学习和人工智能的这种新的自动系统在股直肌肌肉结构参数的超声成像量化方面具有一致性和可靠性。