Suppr超能文献

基于迁移学习的人工智能增强型上转换纳米颗粒侧向流动分析

Artificial intelligence reinforced upconversion nanoparticle-based lateral flow assay via transfer learning.

作者信息

Wang Wei, Chen Kuo, Ma Xing, Guo Jinhong

机构信息

School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

School of Software Engineering, Chongqing University of Posts and Telecommunications,Chongqing 400065, China.

出版信息

Fundam Res. 2022 May 2;3(4):544-556. doi: 10.1016/j.fmre.2022.03.025. eCollection 2023 Jul.

Abstract

The combination of upconverting nanoparticles (UCNPs) and immunochromatography has become a widely used and promising new detection technique for point-of-care testing (POCT). However, their low luminescence efficiency, non-specific adsorption, and image noise have always limited their progress toward practical applications. Recently, artificial intelligence (AI) has demonstrated powerful representational learning and generalization capabilities in computer vision. We report for the first time a combination of AI and upconversion nanoparticle-based lateral flow assays (UCNP-LFAs) for the quantitative detection of commercial internet of things (IoT) devices. This universal UCNPs quantitative detection strategy combines high accuracy, sensitivity, and applicability in the field detection environment. By using transfer learning to train AI models in a small self-built database, we not only significantly improved the accuracy and robustness of quantitative detection, but also efficiently solved the actual problems of data scarcity and low computing power of POCT equipment. Then, the trained AI model was deployed in IoT devices, whereby the detection process does not require detailed data preprocessing to achieve real-time inference of quantitative results. We validated the quantitative detection of two detectors using eight transfer learning models on a small dataset. The AI quickly provided ultra-high accuracy prediction results (some models could reach 100% accuracy) even when strong noise was added. Simultaneously, the high flexibility of this strategy promises to be a general quantitative detection method for optical biosensors. We believe that this strategy and device have a scientific significance in revolutionizing the existing POCT technology landscape and providing excellent commercial value in the in vitro diagnostics (IVD) industry.

摘要

上转换纳米颗粒(UCNPs)与免疫层析相结合,已成为一种广泛应用且颇具前景的即时检测(POCT)新检测技术。然而,其低发光效率、非特异性吸附和图像噪声一直限制着它们在实际应用方面的进展。近来,人工智能(AI)在计算机视觉中展现出了强大的表征学习和泛化能力。我们首次报道了将AI与基于上转换纳米颗粒的侧向流动分析(UCNP-LFAs)相结合,用于对商用物联网(IoT)设备进行定量检测。这种通用的UCNPs定量检测策略在现场检测环境中兼具高精度、高灵敏度和适用性。通过在自建的小型数据库中使用迁移学习来训练AI模型,我们不仅显著提高了定量检测的准确性和稳健性,还有效解决了POCT设备数据稀缺和计算能力低的实际问题。然后,将训练好的AI模型部署到物联网设备中,检测过程无需详细的数据预处理即可实现定量结果的实时推断。我们在一个小型数据集上使用八个迁移学习模型验证了两种检测器进行定量检测的情况。即使添加强噪声,AI也能快速提供超高精度的预测结果(一些模型的准确率可达100%)。同时,该策略的高灵活性有望成为光学生物传感器的通用定量检测方法。我们相信,这种策略和设备对于革新现有的POCT技术格局具有科学意义,并在体外诊断(IVD)行业具有出色的商业价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec05/11197505/0c7505fd5627/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验