Zhang Shun, Wu Ruizhi, Zhong Feng, Ma Xiaochun, Wang Xiang, Wu Qiang
Key Laboratory of Superlight Materials & Surface Technology (Ministry of Education), Harbin Engineering University, Harbin 150001, China.
College of Science, Heihe University, Heihe 164300, China.
Fundam Res. 2022 Feb 9;3(3):430-433. doi: 10.1016/j.fmre.2022.01.023. eCollection 2023 May.
The bcc-structured Mg-Li alloy is currently the engineering metallic material with the lowest density, but it has not been widely used due to its low strength. In this paper, alloying Zn effectively improves the strength of the bcc-structured Mg-Li alloy. Due to the semi-coherent B2 structured nanoparticles, the compressive yield strength of the as-cast Mg-13Li-9Zn alloy reaches higher than 300 MPa. Due to the solid solution strengthening of Zn and the spinodal zone, the compressive yield strength of the as-quenched Mg-13Li-15Zn (LZ1315) alloy immediately increases to 400 MPa. In addition, the as-quenched LZ1315 alloy exhibits natural aging strengthening behavior. Due to the precipitation of B2 nanoparticles, the yield strength of the peak aged alloy is up to 495 MPa.
体心立方结构的镁锂合金是目前密度最低的工程金属材料,但由于其强度较低,尚未得到广泛应用。在本文中,合金化锌有效地提高了体心立方结构镁锂合金的强度。由于半共格B2结构纳米颗粒,铸态Mg-13Li-9Zn合金的压缩屈服强度高于300MPa。由于锌的固溶强化和调幅分解区,淬火态Mg-13Li-15Zn(LZ1315)合金的压缩屈服强度立即提高到400MPa。此外,淬火态LZ1315合金表现出自然时效强化行为。由于B2纳米颗粒的析出,峰值时效合金的屈服强度高达495MPa。