Department of Urology, Tianjin Medical University General Hospital, Tianjin, China.
Sci Data. 2024 Jun 27;11(1):701. doi: 10.1038/s41597-024-03551-2.
Bone metastasis is an essential factor affecting the prognosis of prostate cancer (PCa), and circulating tumor cells (CTCs) are closely related to distant tumor metastasis. Here, the protein-protein interaction (PPI) networks and Cytoscape application were used to identify diagnostic markers for metastatic events in PCa. We screened ten hub genes, eight of which had area under the ROC curve (AUC) values > 0.85. Subsequently, we aim to develop a bone metastasis-related model relying on differentially expressed genes in CTCs for accurate risk stratification. We developed an integrative program based on machine learning algorithm combinations to construct reliable bone metastasis-related genes prognostic index (BMGPI). On the basis of BMGPI, we carefully evaluated the prognostic outcomes, functional status, tumor immune microenvironment, somatic mutation, copy number variation (CNV), response to immunotherapy and drug sensitivity in different subgroups. BMGPI was an independent risk factor for disease-free survival in PCa. The high risk group demonstrated poor survival as well as higher immune scores, higher tumor mutation burden (TMB), more frequent co-occurrence mutation, and worse efficacy of immunotherapy. This study highlights a new prognostic signature, the BMGPI. BMGPI is an independent predictor of prognosis in PCa patients and is closely associated with the immune microenvironment and the efficacy of immunotherapy.
骨转移是影响前列腺癌(PCa)预后的重要因素,循环肿瘤细胞(CTC)与远处肿瘤转移密切相关。本研究采用蛋白质-蛋白质相互作用(PPI)网络和 Cytoscape 应用,鉴定 PCa 远处转移事件的诊断标志物。我们筛选出 10 个枢纽基因,其中 8 个的受试者工作特征曲线(ROC)下面积(AUC)值>0.85。随后,我们旨在基于 CTCs 中差异表达的基因开发一种用于准确风险分层的骨转移相关模型。我们开发了一个基于机器学习算法组合的综合程序,以构建可靠的骨转移相关基因预后指数(BMGPI)。基于 BMGPI,我们仔细评估了不同亚组的预后结果、功能状态、肿瘤免疫微环境、体细胞突变、拷贝数变异(CNV)、对免疫治疗的反应和药物敏感性。BMGPI 是 PCa 无病生存的独立危险因素。高危组的生存情况较差,免疫评分较高,肿瘤突变负荷(TMB)较高,共发生突变的频率更高,免疫治疗效果更差。本研究强调了一种新的预后标志物,即 BMGPI。BMGPI 是 PCa 患者预后的独立预测因子,与免疫微环境和免疫治疗效果密切相关。