Suppr超能文献

声混频与环烯烃共聚物微流控的集成用于增强纳米级脂质体合成的片上实验室应用。

Integration of acoustic micromixing with cyclic olefin copolymer microfluidics for enhanced lab-on-a-chip applications in nanoscale liposome synthesis.

机构信息

Department of Mechanical and Nuclear Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.

System on Chip Lab, Khalifa University, Abu Dhabi 127788, United Arab Emirates.

出版信息

Biofabrication. 2024 Jul 10;16(4). doi: 10.1088/1758-5090/ad5d19.

Abstract

The integration of acoustic wave micromixing with microfluidic systems holds great potential for applications in biomedicine and lab-on-a-chip technologies. Polymers such as cyclic olefin copolymer (COC) are increasingly utilized in microfluidic applications due to its unique properties, low cost, and versatile fabrication methods, and incorporating them into acoustofluidics significantly expands their potential applications. In this work, for the first time, we demonstrated the integration of polymer microfluidics with acoustic micromixing utilizing oscillating sharp edge structures to homogenize flowing fluids. The sharp edge mixing platform was entirely composed of COC fabricated in a COC-hydrocarbon solvent swelling based microfabrication process. As an electrical signal is applied to a piezoelectric transducer bonded to the micromixer, the sharp edges start to oscillate generating vortices at its tip, mixing the fluids. A 2D numerical model was implemented to determine the optimum microchannel dimensions for experimental mixing assessment. The system was shown to successfully mix fluids at flow rates up to 150l hand has a modest effect even at the highest tested flow rate of 600l h. The utility of the fabricated sharp edge micromixer was demonstrated by the synthesis of nanoscale liposomes.

摘要

声波微混合与微流控系统的集成在生物医学和芯片实验室技术的应用中具有很大的潜力。由于其独特的性质、低成本和多样的制造方法,环状烯烃共聚物 (COC) 等聚合物在微流控应用中越来越受到重视,将其纳入声流控技术可显著扩展其潜在应用。在这项工作中,我们首次展示了利用振荡锐边结构实现聚合物微流控与声微混合的集成,以均匀化流动流体。锐边混合平台完全由 COC 组成,采用 COC-碳氢溶剂溶胀微加工工艺制造。当电信号施加到粘结在微混合器上的压电换能器上时,锐边开始振动,在其尖端产生涡流,从而混合流体。实施了一个 2D 数值模型来确定用于实验混合评估的最佳微通道尺寸。该系统成功地在高达 150l/h 的流速下混合了流体,即使在测试的最高流速 600l/h 下也有适度的效果。通过合成纳米级脂质体证明了所制造的锐边微混合器的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验