Zan Guangtao, Li Shanqing, Chen Ping, Dong Kangze, Wu Qingsheng, Wu Tong
School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China.
Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
ACS Cent Sci. 2024 Jun 10;10(6):1283-1294. doi: 10.1021/acscentsci.4c00345. eCollection 2024 Jun 26.
High capacity and long cycling often conflict with each other in electrode materials. Despite extensive efforts in structural design, it remains challenging to simultaneously achieve dual high electrochemical properties. In this study, we prepared brand-new completely uniform mesoporous cubic-cages assembled by large -spacing Ni(OH) coupled monolayers intercalated with VO (NiCMCs) using a biomimetic approach. Such unique mesoporous structural configuration results in an almost full atomic exposure with an amazing specific surface area of 505 m/g and atomic utilization efficiency close to the theoretical limit, which is the highest value and far surpasses all of the reported Ni(OH). Thus, a breakthrough in simultaneously attaining high capacity approaching the 100% theoretical value and robust cycling of 10,000 cycles is achieved, setting a new precedent in achieving double-high attributes. When combined with high-performance BiO hexagonal nanotubes, the resulting aqueous battery exhibits an ultrahigh energy density of 115 Wh/kg and an outstanding power density of 9.5 kW/kg among the same kind. Characterizations and simulations reveal the important role of large interlayer spacing intercalation units and mesoporous cages for excellent electrochemical thermodynamics and kinetics. This work represents a milestone in developing "double-high" electrode materials, pointing in the direction for related research and paving the way for their practical application.
在电极材料中,高容量和长循环往往相互矛盾。尽管在结构设计方面付出了巨大努力,但要同时实现双重高电化学性能仍然具有挑战性。在本研究中,我们采用仿生方法制备了全新的、完全均匀的介孔立方笼,其由嵌入VO的大间距Ni(OH)耦合单层组装而成(NiCMCs)。这种独特的介孔结构配置导致几乎完全的原子暴露,具有惊人的505 m/g比表面积,原子利用效率接近理论极限,这是最高值,远远超过所有已报道的Ni(OH)。因此,在同时实现接近100%理论值的高容量和10000次循环的稳健循环方面取得了突破,开创了实现双高属性的新先例。当与高性能BiO六角纳米管结合时,所得水系电池在同类电池中表现出115 Wh/kg的超高能量密度和9.5 kW/kg的出色功率密度。表征和模拟揭示了大层间距插层单元和介孔笼对优异电化学热力学和动力学的重要作用。这项工作代表了开发“双高”电极材料的一个里程碑,为相关研究指明了方向,并为其实际应用铺平了道路。