Zhang Lili, Chen Mei, Wang Zhiqiang, Zhong Minjuan, Chen Hong, Li Ting, Wang Linlin, Zhao Zhihui, Zhang Xiao-Bing, Ke Guoliang, Liu Yanlan, Tan Weihong
Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
ACS Cent Sci. 2024 May 21;10(6):1201-1210. doi: 10.1021/acscentsci.4c00380. eCollection 2024 Jun 26.
Coacervates formed by liquid-liquid phase separation emerge as important biomimetic models for studying the dynamic behaviors of membraneless organelles and synchronously motivating the creation of smart architectures with the regulation of cell fate. Despite continuous progress, it remains challenging to balance the trade-offs among structural stability, versatility, and molecular communication for regulation of cell fate and systemic investigation in a complex physiological system. Herein, we present a self-stabilizing and fastener-bound gain-of-function methodology to create a new type of synthetic DNA membraneless organelle (MO) with high stability and controlled bioactivity on the basis of DNA coacervates. Specifically, long single-strand DNA generated by rolling circle amplification (RCA) is selected as the scaffold that assembles into membraneless coacervates via phase separation. Intriguingly, the as-formed DNA MO can recruit RCA byproducts and other components to achieve self-stabilization, nanoscale condensation, and function encoding. As a proof of concept, photoactivatable DNA MO is constructed and successfully employed for time-dependent accumulation and spatiotemporal management of cancer in a mouse model. This study offers new, important insights into synthetic membraneless organelles for the basic understanding and manipulation of important life processes.
通过液-液相分离形成的凝聚体成为研究无膜细胞器动态行为以及同步推动具有细胞命运调控功能的智能结构创建的重要仿生模型。尽管取得了持续进展,但在复杂生理系统中,要在结构稳定性、多功能性以及用于细胞命运调控和系统研究的分子通讯之间平衡权衡仍具有挑战性。在此,我们提出一种自稳定且通过紧固件结合实现功能获得的方法,以基于DNA凝聚体创建一种具有高稳定性和可控生物活性的新型合成DNA无膜细胞器(MO)。具体而言,选择滚环扩增(RCA)产生的长单链DNA作为支架,其通过相分离组装成无膜凝聚体。有趣的是,所形成的DNA MO可以募集RCA副产物和其他成分以实现自我稳定、纳米级凝聚和功能编码。作为概念验证,构建了光激活DNA MO,并成功用于小鼠模型中癌症的时间依赖性积累和时空管理。这项研究为合成无膜细胞器提供了新的重要见解,有助于对重要生命过程进行基础理解和操控。