Rubinos Rodriguez Jorge, Fernandez Santiago, Swartz Nicholas, Alonge Austin, Bhullar Fahad, Betros Trevor, Girdler Michael, Patel Neil, Adas Sayf, Cervone Adam, Jacobs Robin J
Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA.
Cureus. 2024 May 30;16(5):e61379. doi: 10.7759/cureus.61379. eCollection 2024 May.
Leukemia is a rare but fatal cancer of the blood. This cancer arises from abnormal bone marrow cells and requires prompt diagnosis for effective treatment and positive patient prognosis. Traditional diagnostic methods (e.g., microscopy, flow cytometry, and biopsy) pose challenges in both accuracy and time, demanding an inquisition on the development and use of deep learning (DL) models, such as convolutional neural networks (CNN), which could allow for a faster and more exact diagnosis. Using specific, objective criteria, DL might hold promise as a tool for physicians to diagnose leukemia. The purpose of this review was to report the relevant available published literature on using DL to diagnose leukemia. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, articles published between 2010 and 2023 were searched using Embase, Ovid MEDLINE, and Web of Science, searching the terms "leukemia" AND "deep learning" or "artificial neural network" OR "neural network" AND "diagnosis" OR "detection." After screening retrieved articles using pre-determined eligibility criteria, 20 articles were included in the final review and reported chronologically due to the nascent nature of the phenomenon. The initial studies laid the groundwork for subsequent innovations, illustrating the transition from specialized methods to more generalized approaches capitalizing on DL technologies for leukemia detection. This summary of recent DL models revealed a paradigm shift toward integrated architectures, resulting in notable enhancements in accuracy and efficiency. The continuous refinement of models and techniques, coupled with an emphasis on simplicity and efficiency, positions DL as a promising tool for leukemia detection. With the help of these neural networks, leukemia detection could be hastened, allowing for an improved long-term outlook and prognosis. Further research is warranted using real-life scenarios to confirm the suggested transformative effects DL models could have on leukemia diagnosis.
白血病是一种罕见但致命的血液癌症。这种癌症源于异常的骨髓细胞,需要及时诊断以进行有效治疗并获得良好的患者预后。传统的诊断方法(如显微镜检查、流式细胞术和活检)在准确性和时间方面都存在挑战,这就需要对深度学习(DL)模型(如卷积神经网络(CNN))的开发和应用进行研究,因为这些模型可以实现更快、更准确的诊断。基于特定的客观标准,深度学习有望成为医生诊断白血病的工具。本综述的目的是报告有关使用深度学习诊断白血病的相关已发表文献。按照系统评价和Meta分析的首选报告项目(PRISMA)指南,使用Embase、Ovid MEDLINE和Web of Science搜索2010年至2023年发表的文章,搜索词为“白血病” AND “深度学习” 或 “人工神经网络” 或 “神经网络” AND “诊断” 或 “检测”。在使用预先确定的纳入标准筛选检索到的文章后,最终纳入20篇文章进行综述,并按时间顺序报告,因为这一现象尚处于初期阶段。最初的研究为后续创新奠定了基础,展示了从专门方法向利用深度学习技术进行白血病检测的更通用方法的转变。对近期深度学习模型的总结揭示了向集成架构的范式转变,从而在准确性和效率方面有了显著提高。模型和技术的不断完善,以及对简单性和效率的强调,使深度学习成为白血病检测的一个有前途的工具。借助这些神经网络,可以加快白血病的检测,从而改善长期前景和预后。有必要进一步开展基于实际场景的研究,以证实深度学习模型对白血病诊断可能产生的变革性影响。