Suppr超能文献

使用具有循环学习率的深度密集连接网络对白细胞进行分类以识别白血病。

Using deep DenseNet with cyclical learning rate to classify leukocytes for leukemia identification.

作者信息

Houssein Essam H, Mohamed Osama, Abdel Samee Nagwan, Mahmoud Noha F, Talaat Rawan, Al-Hejri Aymen M, Al-Tam Riyadh M

机构信息

Faculty of Computers and Information, Minia University, Minia, Egypt.

Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt.

出版信息

Front Oncol. 2023 Sep 12;13:1230434. doi: 10.3389/fonc.2023.1230434. eCollection 2023.

Abstract

BACKGROUND

The examination, counting, and classification of white blood cells (WBCs), also known as leukocytes, are essential processes in the diagnosis of many disorders, including leukemia, a kind of blood cancer characterized by the uncontrolled proliferation of carcinogenic leukocytes in the marrow of the bone. Blood smears can be chemically or microscopically studied to better understand hematological diseases and blood disorders. Detecting, identifying, and categorizing the many blood cell types are essential for disease diagnosis and therapy planning. A theoretical and practical issue. However, methods based on deep learning (DL) have greatly helped blood cell classification.

MATERIALS AND METHODS

Images of blood cells in a microscopic smear were collected from GitHub, a public source that uses the MIT license. An end-to-end computer-aided diagnosis (CAD) system for leukocytes has been created and implemented as part of this study. The introduced system comprises image preprocessing and enhancement, image segmentation, feature extraction and selection, and WBC classification. By combining the DenseNet-161 and the cyclical learning rate (CLR), we contribute an approach that speeds up hyperparameter optimization. We also offer the one-cycle technique to rapidly optimize all hyperparameters of DL models to boost training performance.

RESULTS

The dataset has been split into two sets: approximately 80% of the data (9,966 images) for the training set and 20% (2,487 images) for the validation set. The validation set has 623, 620, 620, and 624 eosinophil, lymphocyte, monocyte, and neutrophil images, whereas the training set has 2,497, 2,483, 2,487, and 2,499, respectively. The suggested method has 100% accuracy on the training set of images and 99.8% accuracy on the testing set.

CONCLUSION

Using a combination of the recently developed pretrained convolutional neural network (CNN), DenseNet, and the one fit cycle policy, this study describes a technique of training for the classification of WBCs for leukemia detection. The proposed method is more accurate compared to the state of the art.

摘要

背景

白细胞(WBC),也称为白血球,其检查、计数和分类是诊断许多疾病的重要过程,包括白血病,这是一种血癌,其特征是骨髓中致癌白细胞不受控制地增殖。血液涂片可以通过化学或显微镜方法进行研究,以更好地了解血液学疾病和血液紊乱。检测、识别和分类多种血细胞类型对于疾病诊断和治疗规划至关重要。这是一个理论和实际问题。然而,基于深度学习(DL)的方法极大地帮助了血细胞分类。

材料和方法

从GitHub(一个使用麻省理工学院许可的公共资源)收集显微镜涂片下血细胞的图像。作为本研究的一部分,创建并实施了一个用于白细胞的端到端计算机辅助诊断(CAD)系统。引入的系统包括图像预处理和增强、图像分割、特征提取和选择以及白细胞分类。通过结合DenseNet - 161和循环学习率(CLR),我们提出了一种加快超参数优化的方法。我们还提供单周期技术来快速优化DL模型的所有超参数,以提高训练性能。

结果

数据集已分为两组:约80%的数据(9966张图像)用于训练集,20%(2487张图像)用于验证集。验证集有623、620、620和624张嗜酸性粒细胞、淋巴细胞、单核细胞和中性粒细胞图像,而训练集分别有2497、2483、2487和2499张。所提出的方法在图像训练集上的准确率为100%,在测试集上的准确率为99.8%。

结论

本研究结合最近开发的预训练卷积神经网络(CNN)、DenseNet和单拟合周期策略,描述了一种用于白血病检测的白细胞分类训练技术。与现有技术相比,所提出的方法更准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d0/10523295/c092efb14c3e/fonc-13-1230434-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验