Lauko Kamil Klaudiusz, Nesterowicz Miłosz, Trocka Daria, Dańkowska Karolina, Żendzian-Piotrowska Małgorzata, Zalewska Anna, Maciejczyk Mateusz
'Biochemistry of Civilisation Diseases' Students' Scientific Club at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland.
Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland.
ACS Omega. 2024 Jun 11;9(25):27559-27577. doi: 10.1021/acsomega.4c03025. eCollection 2024 Jun 25.
Hypertension has earned the "silent killer" nickname since it may lead to a number of comorbidities, including diabetes and cardiovascular diseases. Oxidative stress and protein glycation play vital roles in the pathogenesis of hypertension. Several studies have shown that they profoundly account for vascular dysfunction, endothelial damage, and disruption of blood pressure regulatory mechanisms. Of particular note are advanced glycation end products (AGEs). AGEs alter vascular tissues' functional and mechanical properties by binding to receptors for advanced glycation end products (RAGE), stimulating inflammation and free radical-mediated pathways. Propranolol, a nonselective beta-adrenergic receptor antagonist, is one of the most commonly used drugs to treat hypertension and cardiovascular diseases. Our study is the first to analyze propranolol's effects on protein glycoxidation through and approaches. Bovine serum albumin (BSA) was utilized to evaluate glycoxidation inhibition by propranolol. Propranolol (1 mM) and BSA (0.09 mM) were incubated with different glycating (0.5 M glucose, fructose, and galactose for 6 days and 2.5 mM glyoxal and methylglyoxal for 12 h) or oxidizing agents (chloramine T for 1 h). Biomarkers of protein glycation (Amadori products (APs), β-amyloid (βA), and advanced glycation end products (AGEs)), protein glycoxidation (dityrosine (DT), kynurenine (KYN), and -formylkynurenine (NFK)), protein oxidation (protein carbonyls (PCs), and advanced oxidation protein products (AOPPs)) were measured by means of colorimetric and fluorimetric methods. The scavenging of reactive oxygen species (hydrogen peroxide, hydroxyl radical, and nitric oxide) and the antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion chelating (FIC) assays)) of propranolol were also evaluated. Additionally, docking was performed to showcase propranolol's interaction with BSA, glycosides, and AGE/RAGE pathway proteins. The products of protein glycation (↓APs, ↓βA, ↓AGEs), glycoxidation (↓DT, ↓KYN, ↓NFK), and oxidation (↓PCs, ↓AOPPs) prominently decreased in the BSA samples with both glycating/oxidizing factors and propranolol. The antiglycoxidant properties of propranolol were similar to those of aminoguanidine, a known protein oxidation inhibitor, and captopril, which is an established antioxidant. Propranolol showed a potent antioxidant activity in the FIC and HO scavenging assays, comparable to aminoguanidine and captopril. analysis indicated propranolol's antiglycative properties during its interaction with BSA, glycosidases, and AGE/RAGE pathway proteins. Our results confirm that propranolol may decrease protein oxidation and glycoxidation . Additional studies on human and animal models are vital for verification of propranolol's antiglycation activity, as this discovery might hold the key to the prevention of diabetic complications among cardiology-burdened patients.
高血压素有“沉默杀手”之称,因为它可能导致多种合并症,包括糖尿病和心血管疾病。氧化应激和蛋白质糖基化在高血压的发病机制中起着至关重要的作用。多项研究表明,它们在很大程度上导致了血管功能障碍、内皮损伤以及血压调节机制紊乱。特别值得注意的是晚期糖基化终产物(AGEs)。AGEs通过与晚期糖基化终产物受体(RAGE)结合,改变血管组织的功能和机械特性,刺激炎症和自由基介导的途径。普萘洛尔是一种非选择性β-肾上腺素能受体拮抗剂,是治疗高血压和心血管疾病最常用的药物之一。我们的研究首次通过[具体方法1]和[具体方法2]分析了普萘洛尔对蛋白质糖氧化的影响。利用牛血清白蛋白(BSA)评估普萘洛尔对糖氧化的抑制作用。将普萘洛尔(1 mM)和BSA(0.09 mM)与不同的糖基化剂(0.5 M葡萄糖、果糖和半乳糖作用6天,2.5 mM乙二醛和甲基乙二醛作用12小时)或氧化剂(氯胺T作用1小时)一起孵育。通过比色法和荧光法测量蛋白质糖基化的生物标志物(阿马多里产物(APs)、β-淀粉样蛋白(βA)和晚期糖基化终产物(AGEs))、蛋白质糖氧化(二酪氨酸(DT)、犬尿氨酸(KYN)和N-甲酰犬尿氨酸(NFK))、蛋白质氧化(蛋白质羰基(PCs)和晚期氧化蛋白产物(AOPPs))。还评估了普萘洛尔对活性氧(过氧化氢、羟基自由基和一氧化氮)的清除能力以及抗氧化能力(2,2-二苯基-1-苦基肼自由基和亚铁离子螯合(FIC)测定)。此外,进行了[具体对接方法]对接,以展示普萘洛尔与BSA、糖苷以及AGE/RAGE途径蛋白的相互作用。在同时存在糖基化/氧化因子和普萘洛尔的BSA样品中,蛋白质糖基化产物(↓APs、↓βA、↓AGEs)、糖氧化产物(↓DT、↓KYN、↓NFK)和氧化产物(↓PCs、↓AOPPs)显著减少。普萘洛尔的抗糖氧化特性与已知的蛋白质氧化抑制剂氨基胍以及已证实的抗氧化剂卡托普利相似。在FIC和清除羟基自由基(HO)测定中,普萘洛尔表现出强大的抗氧化活性,与氨基胍和卡托普利相当。[具体分析方法]分析表明普萘洛尔在与BSA、糖苷酶以及AGE/RAGE途径蛋白相互作用过程中具有抗糖基化特性。我们的结果证实,普萘洛尔可能会减少蛋白质氧化和糖氧化。对人类和动物模型进行进一步研究对于验证普萘洛尔的抗糖基化活性至关重要,因为这一发现可能是预防心脏病患者糖尿病并发症的关键。