Meta AI, Paris, France.
Université Paris-Saclay, Inria, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Paris, France.
Nat Hum Behav. 2023 Mar;7(3):430-441. doi: 10.1038/s41562-022-01516-2. Epub 2023 Mar 2.
Considerable progress has recently been made in natural language processing: deep learning algorithms are increasingly able to generate, summarize, translate and classify texts. Yet, these language models still fail to match the language abilities of humans. Predictive coding theory offers a tentative explanation to this discrepancy: while language models are optimized to predict nearby words, the human brain would continuously predict a hierarchy of representations that spans multiple timescales. To test this hypothesis, we analysed the functional magnetic resonance imaging brain signals of 304 participants listening to short stories. First, we confirmed that the activations of modern language models linearly map onto the brain responses to speech. Second, we showed that enhancing these algorithms with predictions that span multiple timescales improves this brain mapping. Finally, we showed that these predictions are organized hierarchically: frontoparietal cortices predict higher-level, longer-range and more contextual representations than temporal cortices. Overall, these results strengthen the role of hierarchical predictive coding in language processing and illustrate how the synergy between neuroscience and artificial intelligence can unravel the computational bases of human cognition.
近年来,自然语言处理领域取得了长足的进展:深度学习算法越来越能够生成、总结、翻译和分类文本。然而,这些语言模型仍然无法与人类的语言能力相匹配。预测编码理论为此差异提供了一个初步的解释:虽然语言模型经过优化可以预测附近的单词,但人类大脑会不断预测跨越多个时间尺度的表示层次结构。为了验证这一假设,我们分析了 304 名参与者在听短篇小说时的功能磁共振成像脑信号。首先,我们证实现代语言模型的激活与对语音的大脑反应呈线性映射。其次,我们表明,通过增强这些算法以进行跨越多个时间尺度的预测,可以改善这种大脑映射。最后,我们表明这些预测是分层组织的:额顶叶皮层比颞叶皮层预测更高层次、更长距离和更具上下文的表示。总的来说,这些结果加强了分层预测编码在语言处理中的作用,并说明了神经科学和人工智能之间的协同作用如何能够揭示人类认知的计算基础。