Suppr超能文献

利用 3D 转换器和 HMM 对冷冻电镜密度图进行从头原子蛋白结构建模。

De novo atomic protein structure modeling for cryoEM density maps using 3D transformer and HMM.

机构信息

Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA.

Roy Blunt NextGen Precision Health, University of Missouri, Columbia, MO, USA.

出版信息

Nat Commun. 2024 Jun 29;15(1):5511. doi: 10.1038/s41467-024-49647-6.

Abstract

Accurately building 3D atomic structures from cryo-EM density maps is a crucial step in cryo-EM-based protein structure determination. Converting density maps into 3D atomic structures for proteins lacking accurate homologous or predicted structures as templates remains a significant challenge. Here, we introduce Cryo2Struct, a fully automated de novo cryo-EM structure modeling method. Cryo2Struct utilizes a 3D transformer to identify atoms and amino acid types in cryo-EM density maps, followed by an innovative Hidden Markov Model (HMM) to connect predicted atoms and build protein backbone structures. Cryo2Struct produces substantially more accurate and complete protein structural models than the widely used ab initio method Phenix. Additionally, its performance in building atomic structural models is robust against changes in the resolution of density maps and the size of protein structures.

摘要

从冷冻电镜密度图中准确构建 3D 原子结构是基于冷冻电镜的蛋白质结构测定的关键步骤。将密度图转换为缺乏准确同源或预测结构模板的蛋白质的 3D 原子结构仍然是一个重大挑战。在这里,我们介绍了 Cryo2Struct,这是一种全自动从头开始的冷冻电镜结构建模方法。Cryo2Struct 使用 3D 转换器来识别冷冻电镜密度图中的原子和氨基酸类型,然后使用创新的隐马尔可夫模型(HMM)连接预测的原子并构建蛋白质骨架结构。Cryo2Struct 生成的蛋白质结构模型比广泛使用的从头开始方法 Phenix 更加准确和完整。此外,其在构建原子结构模型方面的性能对密度图分辨率和蛋白质结构大小的变化具有很强的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d0e/11217428/d802f7121656/41467_2024_49647_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验