Suppr超能文献

一种市售人工智能移动健康应用程序用于皮肤癌筛查的验证:一项前瞻性多中心诊断准确性研究。

Validation of a Market-Approved Artificial Intelligence Mobile Health App for Skin Cancer Screening: A Prospective Multicenter Diagnostic Accuracy Study.

机构信息

Department of Dermatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.

Department of Dermatology, Albert Schweitzer Hospital, Dordrecht, The Netherlands.

出版信息

Dermatology. 2022;238(4):649-656. doi: 10.1159/000520474. Epub 2022 Feb 4.

Abstract

BACKGROUND

Mobile health (mHealth) consumer applications (apps) have been integrated with deep learning for skin cancer risk assessments. However, prospective validation of these apps is lacking.

OBJECTIVES

To identify the diagnostic accuracy of an app integrated with a convolutional neural network for the detection of premalignant and malignant skin lesions.

METHODS

We performed a prospective multicenter diagnostic accuracy study of a CE-marked mHealth app from January 1 until August 31, 2020, among adult patients with at least one suspicious skin lesion. Skin lesions were assessed by the app on an iOS or Android device after clinical diagnosis and before obtaining histopathology. The app outcome was compared to the histopathological diagnosis, or if not available, the clinical diagnosis by a dermatologist. The primary outcome was the sensitivity and specificity of the app to detect premalignant and malignant skin lesions. Subgroup analyses were conducted for different smartphone types, the lesion's origin, indication for dermatological consultation, and lesion location.

RESULTS

In total, 785 lesions, including 418 suspicious and 367 benign control lesions, among 372 patients (50.8% women) with a median age of 71 years were included. The app performed at an overall 86.9% (95% CI 82.3-90.7) sensitivity and 70.4% (95% CI 66.2-74.3) specificity. The sensitivity was significantly higher on the iOS device compared to the Android device (91.0 vs. 83.0%; p = 0.02). Specificity calculated on benign control lesions was significantly higher than suspicious skin lesions (80.1 vs. 45.5%; p < 0.001). Sensitivity was higher in skin fold areas compared to smooth skin areas (92.9 vs. 84.2%; p = 0.01), while the specificity was higher for lesions in smooth skin areas (72.0 vs. 56.6%; p = 0.02).

CONCLUSION

The diagnostic accuracy of the mHealth app is far from perfect, but is potentially promising to empower patients to self-assess skin lesions before consulting a health care professional. An additional prospective validation study, particularly for suspicious pigmented skin lesions, is warranted. Furthermore, studies investigating mHealth implementation in the lay population are needed to demonstrate the impact on health care systems.

摘要

背景

移动健康 (mHealth) 消费者应用程序 (apps) 已经与深度学习集成,用于皮肤癌风险评估。然而,这些应用程序的前瞻性验证是缺乏的。

目的

确定集成卷积神经网络的应用程序对检测癌前和恶性皮肤病变的诊断准确性。

方法

我们在 2020 年 1 月 1 日至 8 月 31 日期间,对一种带有 CE 标志的 mHealth 应用程序进行了前瞻性多中心诊断准确性研究,纳入了至少有一处可疑皮肤病变的成年患者。在临床诊断后和获得组织病理学检查前,使用 iOS 或 Android 设备上的应用程序对皮肤病变进行评估。应用程序的结果与组织病理学诊断进行比较,如果没有组织病理学诊断,则与皮肤科医生的临床诊断进行比较。主要结局是应用程序检测癌前和恶性皮肤病变的敏感性和特异性。进行了亚组分析,分析了不同类型的智能手机、病变的起源、皮肤科咨询的指征和病变的位置。

结果

共纳入了 372 名患者(50.8%为女性)的 785 处病变,包括 418 处可疑病变和 367 处良性对照病变,中位年龄为 71 岁。该应用程序的总体敏感性为 86.9%(95%CI 82.3-90.7),特异性为 70.4%(95%CI 66.2-74.3)。与 Android 设备相比,iOS 设备上的应用程序的敏感性显著更高(91.0%比 83.0%;p=0.02)。在良性对照病变上计算的特异性显著高于可疑皮肤病变(80.1%比 45.5%;p<0.001)。与光滑皮肤区域相比,褶皱皮肤区域的敏感性更高(92.9%比 84.2%;p=0.01),而光滑皮肤区域的特异性更高(72.0%比 56.6%;p=0.02)。

结论

该 mHealth 应用程序的诊断准确性远非完美,但有可能有潜力赋能患者在咨询医疗保健专业人员之前自行评估皮肤病变。需要进行进一步的前瞻性验证研究,特别是针对可疑色素性皮肤病变。此外,还需要研究 mHealth 在普通人群中的实施情况,以展示对医疗保健系统的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f189/9393821/5fb5f8039a17/drm-0238-0649-g01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验