文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Adrenal Volume Quantitative Visualization Tool by Multiple Parameters and an nnU-Net Deep Learning Automatic Segmentation Model.

作者信息

Li Yi, Zhao Yingnan, Yang Ping, Li Caihong, Liu Liu, Zhao Xiaofang, Tang Huali, Mao Yun

机构信息

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Guangzhou University, Guangzhou, China.

出版信息

J Imaging Inform Med. 2025 Feb;38(1):47-59. doi: 10.1007/s10278-024-01158-y. Epub 2024 Jul 2.


DOI:10.1007/s10278-024-01158-y
PMID:38955963
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11811328/
Abstract

Abnormalities in adrenal gland size may be associated with various diseases. Monitoring the volume of adrenal gland can provide a quantitative imaging indicator for such conditions as adrenal hyperplasia, adrenal adenoma, and adrenal cortical adenocarcinoma. However, current adrenal gland segmentation models have notable limitations in sample selection and imaging parameters, particularly the need for more training on low-dose imaging parameters, which limits the generalization ability of the models, restricting their widespread application in routine clinical practice. We developed a fully automated adrenal gland volume quantification and visualization tool based on the no new U-Net (nnU-Net) for the automatic segmentation of deep learning models to address these issues. We established this tool by using a large dataset with multiple parameters, machine types, radiation doses, slice thicknesses, scanning modes, phases, and adrenal gland morphologies to achieve high accuracy and broad adaptability. The tool can meet clinical needs such as screening, monitoring, and preoperative visualization assistance for adrenal gland diseases. Experimental results demonstrate that our model achieves an overall dice coefficient of 0.88 on all images and 0.87 on low-dose CT scans. Compared to other deep learning models and nnU-Net model tools, our model exhibits higher accuracy and broader adaptability in adrenal gland segmentation.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb24/11811328/620115a87176/10278_2024_1158_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb24/11811328/48822d6ad7f7/10278_2024_1158_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb24/11811328/f8822464f4a0/10278_2024_1158_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb24/11811328/9ba72bc41818/10278_2024_1158_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb24/11811328/620115a87176/10278_2024_1158_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb24/11811328/48822d6ad7f7/10278_2024_1158_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb24/11811328/f8822464f4a0/10278_2024_1158_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb24/11811328/9ba72bc41818/10278_2024_1158_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb24/11811328/620115a87176/10278_2024_1158_Fig4_HTML.jpg

相似文献

[1]
Adrenal Volume Quantitative Visualization Tool by Multiple Parameters and an nnU-Net Deep Learning Automatic Segmentation Model.

J Imaging Inform Med. 2025-2

[2]
A deep learning algorithm for automated adrenal gland segmentation on non-contrast CT images.

BMC Med Imaging. 2025-5-1

[3]
Fully automatic volume measurement of the adrenal gland on CT using deep learning to classify adrenal hyperplasia.

Eur Radiol. 2023-6

[4]
Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.

Med Phys. 2021-5

[5]
AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.

Med Phys. 2018-12-17

[6]
Computer-aided diagnosis of cystic lung diseases using CT scans and deep learning.

Med Phys. 2024-9

[7]
Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework.

Eur Radiol. 2022-6

[8]
A deep learning-based self-adapting ensemble method for segmentation in gynecological brachytherapy.

Radiat Oncol. 2022-9-5

[9]
Segmentation of human aorta using 3D nnU-net-oriented deep learning.

Rev Sci Instrum. 2022-11-1

[10]
Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning.

J Magn Reson Imaging. 2023-3

本文引用的文献

[1]
Direct three-dimensional segmentation of prostate glands with nnU-Net.

J Biomed Opt. 2024-3

[2]
MCNet: A multi-level context-aware network for the segmentation of adrenal gland in CT images.

Neural Netw. 2024-2

[3]
The nnU-Net based method for automatic segmenting fetal brain tissues.

Health Inf Sci Syst. 2023-3-27

[4]
Fully automatic volume measurement of the adrenal gland on CT using deep learning to classify adrenal hyperplasia.

Eur Radiol. 2023-6

[5]
Segmentation of human aorta using 3D nnU-net-oriented deep learning.

Rev Sci Instrum. 2022-11-1

[6]
Machine Learning for Adrenal Gland Segmentation and Classification of Normal and Adrenal Masses at CT.

Radiology. 2023-2

[7]
Cardiovascular health and mortality in Cushing's disease.

Pituitary. 2022-10

[8]
Automated Measurement of Pancreatic Fat Deposition on Dixon MRI Using nnU-Net.

J Magn Reson Imaging. 2023-1

[9]
Association of MRI-based adrenal gland volume and impaired glucose metabolism in a population-based cohort study.

Diabetes Metab Res Rev. 2022-7

[10]
Overview of the 2022 WHO Classification of Adrenal Cortical Tumors.

Endocr Pathol. 2022-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索