Li Yi, Zhao Yingnan, Yang Ping, Li Caihong, Liu Liu, Zhao Xiaofang, Tang Huali, Mao Yun
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Guangzhou University, Guangzhou, China.
J Imaging Inform Med. 2025 Feb;38(1):47-59. doi: 10.1007/s10278-024-01158-y. Epub 2024 Jul 2.
Abnormalities in adrenal gland size may be associated with various diseases. Monitoring the volume of adrenal gland can provide a quantitative imaging indicator for such conditions as adrenal hyperplasia, adrenal adenoma, and adrenal cortical adenocarcinoma. However, current adrenal gland segmentation models have notable limitations in sample selection and imaging parameters, particularly the need for more training on low-dose imaging parameters, which limits the generalization ability of the models, restricting their widespread application in routine clinical practice. We developed a fully automated adrenal gland volume quantification and visualization tool based on the no new U-Net (nnU-Net) for the automatic segmentation of deep learning models to address these issues. We established this tool by using a large dataset with multiple parameters, machine types, radiation doses, slice thicknesses, scanning modes, phases, and adrenal gland morphologies to achieve high accuracy and broad adaptability. The tool can meet clinical needs such as screening, monitoring, and preoperative visualization assistance for adrenal gland diseases. Experimental results demonstrate that our model achieves an overall dice coefficient of 0.88 on all images and 0.87 on low-dose CT scans. Compared to other deep learning models and nnU-Net model tools, our model exhibits higher accuracy and broader adaptability in adrenal gland segmentation.
肾上腺大小异常可能与多种疾病相关。监测肾上腺体积可为肾上腺增生、肾上腺腺瘤和肾上腺皮质腺癌等病症提供定量成像指标。然而,当前的肾上腺分割模型在样本选择和成像参数方面存在显著局限性,尤其是在低剂量成像参数方面需要更多训练,这限制了模型的泛化能力,阻碍了它们在常规临床实践中的广泛应用。我们基于新型U-Net(nnU-Net)开发了一种全自动肾上腺体积量化与可视化工具,用于深度学习模型的自动分割,以解决这些问题。我们通过使用一个包含多种参数、机器类型、辐射剂量、切片厚度、扫描模式、相位和肾上腺形态的大型数据集来建立此工具,以实现高精度和广泛的适应性。该工具可满足肾上腺疾病筛查、监测和术前可视化辅助等临床需求。实验结果表明,我们的模型在所有图像上的总体骰子系数为0.88,在低剂量CT扫描上为0.87。与其他深度学习模型和nnU-Net模型工具相比,我们的模型在肾上腺分割方面表现出更高的准确性和更广泛的适应性。