Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China.
Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Cell Metab. 2024 Jul 2;36(7):1482-1493.e7. doi: 10.1016/j.cmet.2024.05.012.
Although human core body temperature is known to decrease with age, the age dependency of facial temperature and its potential to indicate aging rate or aging-related diseases remains uncertain. Here, we collected thermal facial images of 2,811 Han Chinese individuals 20-90 years old, developed the ThermoFace method to automatically process and analyze images, and then generated thermal age and disease prediction models. The ThermoFace deep learning model for thermal facial age has a mean absolute deviation of about 5 years in cross-validation and 5.18 years in an independent cohort. The difference between predicted and chronological age is highly associated with metabolic parameters, sleep time, and gene expression pathways like DNA repair, lipolysis, and ATPase in the blood transcriptome, and it is modifiable by exercise. Consistently, ThermoFace disease predictors forecast metabolic diseases like fatty liver with high accuracy (AUC > 0.80), with predicted disease probability correlated with metabolic parameters.
虽然已知人体核心体温会随着年龄的增长而降低,但面部温度的年龄依赖性及其指示衰老速度或与衰老相关疾病的潜力尚不确定。在这里,我们收集了 2811 名汉族 20-90 岁个体的热面部图像,开发了 ThermoFace 方法来自动处理和分析图像,然后生成了热年龄和疾病预测模型。ThermoFace 热面部年龄的深度学习模型在交叉验证中的平均绝对偏差约为 5 岁,在独立队列中的平均绝对偏差为 5.18 岁。预测年龄与实际年龄的差异与代谢参数、睡眠时间以及血液转录组中的 DNA 修复、脂肪分解和 ATP 酶等基因表达途径高度相关,并且可以通过运动来改变。一致地,ThermoFace 疾病预测器以高精度(AUC>0.80)预测代谢疾病,如脂肪肝,预测疾病的概率与代谢参数相关。