Suppr超能文献

照片年龄时钟:用于开发衰老非侵入性视觉生物标志物的深度学习算法。

PhotoAgeClock: deep learning algorithms for development of non-invasive visual biomarkers of aging.

作者信息

Bobrov Eugene, Georgievskaya Anastasia, Kiselev Konstantin, Sevastopolsky Artem, Zhavoronkov Alex, Gurov Sergey, Rudakov Konstantin, Del Pilar Bonilla Tobar Maria, Jaspers Sören, Clemann Sven

机构信息

HautAI OU, Tallinn, Estonia.

Lomonosov Moscow State University, Moscow, Russia.

出版信息

Aging (Albany NY). 2018 Nov 9;10(11):3249-3259. doi: 10.18632/aging.101629.

Abstract

Aging biomarkers are the qualitative and quantitative indicators of the aging processes of the human body. Estimation of biological age is important for assessing the physiological state of an organism. The advent of machine learning lead to the development of the many age predictors commonly referred to as the "aging clocks" varying in biological relevance, ease of use, cost, actionability, interpretability, and applications. Here we present and investigate a novel non-invasive class of visual photographic biomarkers of aging. We developed a simple and accurate predictor of chronological age using just the anonymized images of eye corners called the PhotoAgeClock. Deep neural networks were trained on 8414 anonymized high-resolution images of eye corners labeled with the correct chronological age. For people within the age range of 20 to 80 in a specific population, the model was able to achieve a mean absolute error of 2.3 years and 95% Pearson and Spearman correlation.

摘要

衰老生物标志物是人体衰老过程的定性和定量指标。生物年龄的估计对于评估生物体的生理状态很重要。机器学习的出现促使了许多年龄预测器的发展,这些预测器通常被称为“衰老时钟”,它们在生物学相关性、易用性、成本、可操作性、可解释性和应用方面各不相同。在此,我们展示并研究了一种新型的非侵入性视觉摄影衰老生物标志物。我们仅使用眼角的匿名图像开发了一种简单而准确的实际年龄预测器,称为“照片年龄时钟”。深度神经网络在8414张标记有正确实际年龄的眼角匿名高分辨率图像上进行训练。对于特定人群中年龄在20至80岁之间的人,该模型能够实现2.3岁的平均绝对误差以及95%的皮尔逊和斯皮尔曼相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验