Suppr超能文献

超大规模集成高品质因数纳米天线像素。

Very-large-scale-integrated high quality factor nanoantenna pixels.

作者信息

Dolia Varun, Balch Halleh B, Dagli Sahil, Abdollahramezani Sajjad, Carr Delgado Hamish, Moradifar Parivash, Chang Kai, Stiber Ariel, Safir Fareeha, Lawrence Mark, Hu Jack, Dionne Jennifer A

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.

Department of Electrical Engineering, Stanford University, Stanford, CA, USA.

出版信息

Nat Nanotechnol. 2024 Sep;19(9):1290-1298. doi: 10.1038/s41565-024-01697-z. Epub 2024 Jul 3.

Abstract

Metasurfaces precisely control the amplitude, polarization and phase of light, with applications spanning imaging, sensing, modulation and computing. Three crucial performance metrics of metasurfaces and their constituent resonators are the quality factor (Q factor), mode volume (V) and ability to control far-field radiation. Often, resonators face a trade-off between these parameters: a reduction in V leads to an equivalent reduction in Q, albeit with more control over radiation. Here we demonstrate that this perceived compromise is not inevitable: high quality factor, subwavelength V and controlled dipole-like radiation can be achieved simultaneously. We design high quality factor, very-large-scale-integrated silicon nanoantenna pixels (VINPix) that combine guided mode resonance waveguides with photonic crystal cavities. With optimized nanoantennas, we achieve Q factors exceeding 1,500 with V less than 0.1 . Each nanoantenna is individually addressable by free-space light and exhibits dipole-like scattering to the far-field. Resonator densities exceeding a million nanoantennas per cm can be achieved. As a proof-of-concept application, we show spectrometer-free, spatially localized, refractive-index sensing, and fabrication of an 8 mm × 8 mm VINPix array. Our platform provides a foundation for compact, densely multiplexed devices such as spatial light modulators, computational spectrometers and in situ environmental sensors.

摘要

超表面可精确控制光的幅度、偏振和相位,其应用涵盖成像、传感、调制和计算等领域。超表面及其组成谐振器的三个关键性能指标是品质因数(Q 因子)、模式体积(V)和控制远场辐射的能力。通常,谐振器在这些参数之间面临权衡:V 的减小会导致 Q 等效减小,尽管对辐射的控制更强。在此,我们证明这种看似的折衷并非不可避免:可以同时实现高品质因数、亚波长 V 和可控的偶极子状辐射。我们设计了将导模共振波导与光子晶体腔相结合的高品质因数、超大规模集成硅纳米天线像素(VINPix)。通过优化的纳米天线,我们实现了品质因数超过 1500 且 V 小于 0.1 。每个纳米天线均可通过自由空间光单独寻址,并向远场呈现偶极子状散射。可以实现每平方厘米超过一百万个纳米天线的谐振器密度。作为概念验证应用,我们展示了无需光谱仪的空间局部折射率传感以及 8 毫米×8 毫米 VINPix 阵列的制造。我们的平台为诸如空间光调制器、计算光谱仪和原位环境传感器等紧凑型、密集复用设备奠定了基础。

相似文献

1
Very-large-scale-integrated high quality factor nanoantenna pixels.
Nat Nanotechnol. 2024 Sep;19(9):1290-1298. doi: 10.1038/s41565-024-01697-z. Epub 2024 Jul 3.
3
Highly efficient coupling of crystalline microresonators to integrated photonic waveguides.
Opt Lett. 2018 May 1;43(9):2106-2109. doi: 10.1364/OL.43.002106.
4
Universal Narrowband Wavefront Shaping with High Quality Factor Meta-Reflect-Arrays.
Nano Lett. 2023 Feb 22;23(4):1355-1362. doi: 10.1021/acs.nanolett.2c04621. Epub 2023 Feb 6.
5
Dielectric optical nanoantennas.
Nanotechnology. 2021 May 14;32(20):202001. doi: 10.1088/1361-6528/abdceb.
6
Resonant Metasurfaces with Van Der Waals Hyperbolic Nanoantennas and Extreme Light Confinement.
Nanomaterials (Basel). 2024 Sep 23;14(18):1539. doi: 10.3390/nano14181539.
7
Subwavelength Grating Cascaded Microring Resonator Biochemical Sensors with Record-High Sensitivity.
ACS Photonics. 2024 Aug 1;11(8):3343-3350. doi: 10.1021/acsphotonics.4c00778. eCollection 2024 Aug 21.
8
High-Quality-Factor Silicon-on-Lithium Niobate Metasurfaces for Electro-optically Reconfigurable Wavefront Shaping.
Nano Lett. 2022 Feb 23;22(4):1703-1709. doi: 10.1021/acs.nanolett.1c04723. Epub 2022 Feb 3.
9
Nonvolatile Phase-Only Transmissive Spatial Light Modulator with Electrical Addressability of Individual Pixels.
ACS Nano. 2024 Apr 30;18(17):11245-11256. doi: 10.1021/acsnano.4c00340. Epub 2024 Apr 19.

引用本文的文献

本文引用的文献

1
Computational spectrometers enabled by nanophotonics and deep learning.
Nanophotonics. 2022 Jan 24;11(11):2507-2529. doi: 10.1515/nanoph-2021-0636. eCollection 2022 Jun.
2
Free-space-coupled wavelength-scale disk resonators.
Nanophotonics. 2022 Apr 20;11(12):2901-2908. doi: 10.1515/nanoph-2022-0106. eCollection 2022 Jun.
3
Roadmap for Optical Metasurfaces.
ACS Photonics. 2024 Feb 27;11(3):816-865. doi: 10.1021/acsphotonics.3c00457. eCollection 2024 Mar 20.
4
Rapid genetic screening with high quality factor metasurfaces.
Nat Commun. 2023 Jul 26;14(1):4486. doi: 10.1038/s41467-023-39721-w.
5
Gigahertz free-space electro-optic modulators based on Mie resonances.
Nat Commun. 2022 Jun 6;13(1):3170. doi: 10.1038/s41467-022-30451-z.
6
A large-scale microelectromechanical-systems-based silicon photonics LiDAR.
Nature. 2022 Mar;603(7900):253-258. doi: 10.1038/s41586-022-04415-8. Epub 2022 Mar 9.
7
A universal 3D imaging sensor on a silicon photonics platform.
Nature. 2021 Feb;590(7845):256-261. doi: 10.1038/s41586-021-03259-y. Epub 2021 Feb 10.
8
Nanofluidic Devices and Applications for Biological Analyses.
Anal Chem. 2021 Jan 12;93(1):332-349. doi: 10.1021/acs.analchem.0c03868. Epub 2020 Oct 30.
9
Rational design of DNA nanostructures for single molecule biosensing.
Nat Commun. 2020 Sep 1;11(1):4384. doi: 10.1038/s41467-020-18132-1.
10
High quality factor phase gradient metasurfaces.
Nat Nanotechnol. 2020 Nov;15(11):956-961. doi: 10.1038/s41565-020-0754-x. Epub 2020 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验