Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA.
Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA.
Nat Commun. 2023 Jul 26;14(1):4486. doi: 10.1038/s41467-023-39721-w.
Genetic analysis methods are foundational to advancing personalized medicine, accelerating disease diagnostics, and monitoring the health of organisms and ecosystems. Current nucleic acid technologies such as polymerase chain reaction (PCR) and next-generation sequencing (NGS) rely on sample amplification and can suffer from inhibition. Here, we introduce a label-free genetic screening platform based on high quality (high-Q) factor silicon nanoantennas functionalized with nucleic acid fragments. Each high-Q nanoantenna exhibits average resonant quality factors of 2,200 in physiological buffer. We quantitatively detect two gene fragments, SARS-CoV-2 envelope (E) and open reading frame 1b (ORF1b), with high-specificity via DNA hybridization. We also demonstrate femtomolar sensitivity in buffer and nanomolar sensitivity in spiked nasopharyngeal eluates within 5 minutes. Nanoantennas are patterned at densities of 160,000 devices per cm, enabling future work on highly-multiplexed detection. Combined with advances in complex sample processing, our work provides a foundation for rapid, compact, and amplification-free molecular assays.
遗传分析方法是推进个性化医学、加速疾病诊断以及监测生物和生态系统健康的基础。目前的核酸技术,如聚合酶链反应(PCR)和下一代测序(NGS),依赖于样本扩增,并且可能受到抑制。在这里,我们介绍了一种基于具有核酸片段的高质量(高-Q)因子硅纳米天线的无标记遗传筛选平台。每个高-Q 纳米天线在生理缓冲液中表现出平均共振质量因子为 2200。我们通过 DNA 杂交实现了对 SARS-CoV-2 包膜(E)和开放阅读框 1b(ORF1b)两个基因片段的高特异性定量检测。我们还在缓冲液中实现了飞摩尔灵敏度,在 5 分钟内对鼻咽洗脱液中的纳摩尔灵敏度进行了检测。纳米天线的图案化密度为每平方厘米 160000 个器件,为高度多重检测的未来工作奠定了基础。结合复杂样品处理的进展,我们的工作为快速、紧凑、无扩增的分子检测提供了基础。