Abdollahramezani Sajjad, Omo-Lamai Darrell, Bosman Gerlof, Hemmatyar Omid, Dagli Sahil, Dolia Varun, Chang Kai, Güsken Nicholas A, Delgado Hamish Carr, Boons Geert-Jan, Brongersma Mark L, Safir Fareeha, Khuri-Yakub Butrus T, Moradifar Parivash, Dionne Jennifer
Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, Netherlands.
ArXiv. 2024 Nov 27:arXiv:2411.18557v1.
Empirical investigation of the quintillion-scale, functionally diverse antibody repertoires that can be generated synthetically or naturally is critical for identifying potential biotherapeutic leads, yet remains burdensome. We present high-throughput nanophotonics- and bioprinter-enabled screening (HT-NaBS), a multiplexed assay for large-scale, sample-efficient, and rapid characterization of antibody libraries. Our platform is built upon independently addressable pixelated nanoantennas exhibiting wavelength-scale mode volumes, high-quality factors (high-Q) exceeding 5000, and pattern densities exceeding one million sensors per square centimeter. Our custom-built acoustic bioprinter enables individual sensor functionalization via the deposition of picoliter droplets from a library of capture antigens at rates up to 25,000 droplets per second. We detect subtle differentiation in the target binding signature through spatially-resolved spectral imaging of hundreds of resonators simultaneously, elucidating antigen-antibody binding kinetic rates, affinity constant, and specificity. We demonstrate HT-NaBS on a panel of antibodies targeting SARS-CoV-2, Influenza A, and Influenza B antigens, with a sub-picomolar limit of detection within 30 minutes. Furthermore, through epitope binning analysis, we demonstrate the competence and diversity of a library of native antibodies targeting functional epitopes on a priority pathogen (H5N1 bird flu) and on glycosylated therapeutic Cetuximab antibodies against epidermal growth factor receptor. With a roadmap to image tens of thousands of sensors simultaneously, this high-throughput, resource-efficient, and label-free platform can rapidly screen for high-affinity and broad epitope coverage, accelerating biotherapeutic discovery and protein design.
对可以通过合成或自然方式产生的千万亿规模、功能多样的抗体库进行实证研究,对于识别潜在的生物治疗先导物至关重要,但仍然很繁琐。我们提出了高通量纳米光子学和生物打印机辅助筛选(HT-NaBS),这是一种用于大规模、样品高效且快速表征抗体库的多重分析方法。我们的平台基于可独立寻址的像素化纳米天线构建,这些天线具有波长尺度的模式体积、超过5000的高品质因数(高Q)以及每平方厘米超过一百万个传感器的图案密度。我们定制的声学生物打印机能够通过从捕获抗原库中以每秒高达25000个皮升液滴的速率沉积皮升液滴来实现单个传感器的功能化。我们通过同时对数百个谐振器进行空间分辨光谱成像来检测目标结合特征中的细微差异,阐明抗原 - 抗体结合动力学速率、亲和常数和特异性。我们在一组针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)、甲型流感和乙型流感抗原的抗体上展示了HT-NaBS,在30分钟内检测限低于皮摩尔。此外,通过表位分组分析,我们展示了针对优先病原体(H5N1禽流感)上功能性表位的天然抗体库以及针对表皮生长因子受体的糖基化治疗性西妥昔单抗抗体的能力和多样性。凭借同时对数万个传感器进行成像的路线图,这个高通量、资源高效且无标记的平台可以快速筛选高亲和力和广泛的表位覆盖范围,加速生物治疗发现和蛋白质设计。