Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California.
Am J Physiol Renal Physiol. 2024 Sep 1;327(3):F327-F339. doi: 10.1152/ajprenal.00115.2024. Epub 2024 Jul 4.
Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so-called metabolic memory. Emerging evidence from in vitro and in vivo animal models and clinical trials with subjects with diabetes identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years.
糖尿病是一种以高血糖为特征的慢性疾病,与明显加速的并发症有关,包括糖尿病肾病(DKD),这会增加发病率和死亡率。高血糖和其他与糖尿病相关的环境因素,如营养过剩、久坐不动的生活方式和高血脂,会引起表观遗传变化。这些表观遗传变化单独或与遗传因素一起发生,在不改变潜在 DNA 序列的情况下,可以改变病理生理基因的表达,并损害相关靶细胞/器官的功能,导致糖尿病并发症,如 DKD。值得注意的是,一些高血糖诱导的表观遗传变化即使在葡萄糖正常化后仍存在于靶细胞/组织中,导致尽管血糖控制良好,但仍持续存在并发症,即所谓的代谢记忆。来自体外和体内动物模型以及糖尿病患者的临床试验的新证据清楚地表明,代谢记忆与表观遗传变化之间存在明确的关联,包括 DNA 甲基化、组蛋白修饰、染色质结构和关键位点的非编码 RNA。针对这些持续的表观遗传变化和/或受其调节的分子,可以为减轻或消除代谢记忆提供有价值的机会,这对于防止并发症进展至关重要。在这里,我们回顾了迄今为止与糖尿病并发症,特别是 DKD 相关的这些细胞/组织特异性表观遗传变化,以及针对表观遗传学来解决代谢记忆的现状。我们还讨论了当前研究的局限性,包括需要更多(表观遗传学)全基因组研究、使用多种表观遗传标记和 Omics 数据集进行综合分析,以及对代谢记忆的机制评估。考虑到表观基因组学、遗传学、测序技术的巨大技术进步以及来自临床队列的基因组数据集的可用性,该领域在未来几年可能会取得相当大的进展。
Am J Physiol Renal Physiol. 2024-9-1
Encephale. 2017-8
2025-1
Cochrane Database Syst Rev. 2014-2-14
Diabetes Obes Metab. 2025-5-15
Arch Ital Urol Androl. 2025-6-30
JBI Database System Rev Implement Rep. 2016-7
Epigenomics. 2025-7-22
Front Pharmacol. 2025-7-24
Diabetes Metab Syndr Obes. 2025-7-30
J Diabetes Res. 2025-7-15
Science. 2023-11-17
Front Endocrinol (Lausanne). 2023
Front Med (Lausanne). 2023-4-18