Luo Cheng, Zheng Zhi-Gang, Zeng Mei-Qi, Xu Hui, Yu Xian-Mei, Sun Da, He Dong-Juan
Department of Endocrinology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang Province, China.
Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang Province, China.
World J Diabetes. 2025 Jun 15;16(6):107017. doi: 10.4239/wjd.v16.i6.107017.
Diabetic retinopathy (DR) is a major microvascular complication of diabetes, with its pathogenesis involving metabolic memory, epigenetic dysregulation, and multi-cellular microenvironmental disorders. This study systematically investigates the mechanism by which curcumol ameliorates DR through regulation of the FTO/MAFG-AS1 epigenetic axis and reveals its therapeutic potential in targeting the retinal microenvironment a nano-delivery system. Experimental results demonstrate that curcumol activates the demethylase activity of FTO, stabilizing the expression of the long non-coding RNA MAFG-AS1, thereby inhibiting high glucose-induced retinal endothelial cell inflammation, migration, and vascular leakage. Single-cell transcriptomic analysis further uncovered the dual role of FTO in DR: On the one hand, it promotes pathological angiogenesis in endothelial cells, while on the other hand, it exerts protective effects through MAFG-AS1-mediated antioxidative and anti-inflammatory functions. Moreover, this study proposes a multidimensional epigenetic regulatory network based on histone lactylation, N6-methyladenosine modification, and DNA methylation, and verifies that curcumol delays DR progression by coordinately modulating these modifications. To overcome the limitations of conventional therapies, this study innovatively designed a macrophage membrane-coated nano-delivery system, significantly enhancing the retinal targeting and bioavailability of curcumol. Finally, the study advocates a paradigm shift from passive treatment to early prevention, proposing a three-tiered intervention strategy that integrates epigenetic biomarkers with artificial intelligence-based risk assessment. These findings not only elucidate the multi-target regulatory mechanisms of curcumol but also provide a theoretical foundation for the development of precision therapies for DR based on epigenetic remodeling and microenvironmental synergistic intervention.
糖尿病视网膜病变(DR)是糖尿病的一种主要微血管并发症,其发病机制涉及代谢记忆、表观遗传失调和多细胞微环境紊乱。本研究系统地探讨了莪术醇通过调节FTO/MAFG-AS1表观遗传轴改善DR的机制,并揭示了其在靶向视网膜微环境的纳米递送系统中的治疗潜力。实验结果表明,莪术醇激活FTO的去甲基化酶活性,稳定长链非编码RNA MAFG-AS1的表达,从而抑制高糖诱导的视网膜内皮细胞炎症、迁移和血管渗漏。单细胞转录组分析进一步揭示了FTO在DR中的双重作用:一方面,它促进内皮细胞的病理性血管生成,另一方面,它通过MAFG-AS1介导的抗氧化和抗炎功能发挥保护作用。此外,本研究提出了一个基于组蛋白乳酰化、N6-甲基腺苷修饰和DNA甲基化的多维表观遗传调控网络,并验证了莪术醇通过协同调节这些修饰来延缓DR的进展。为了克服传统疗法的局限性,本研究创新性地设计了一种巨噬细胞膜包被的纳米递送系统,显著提高了莪术醇的视网膜靶向性和生物利用度。最后,该研究倡导从被动治疗向早期预防的范式转变,提出了一种将表观遗传生物标志物与基于人工智能的风险评估相结合的三层干预策略。这些发现不仅阐明了莪术醇的多靶点调控机制,也为基于表观遗传重塑和微环境协同干预的DR精准治疗的发展提供了理论基础。