Ouf Myada S M, Duab Mahmoud E A, Abdel-Meguid Dina I, El-Sharouny Ebaa E, Soliman Nadia A
Botany and Microbiology Department, Faculty of Science, Alexandria, Egypt.
Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Institutes Zone, New Borg El-Arab City, Alexandria, P.O. 21934, Egypt.
Microb Cell Fact. 2025 Jul 18;24(1):168. doi: 10.1186/s12934-025-02788-9.
Biogenic synthesis of zinc nanoparticles (ZnNPs) has attracted significant interest due to their unique properties and potential biological applications. Unlike chemical and physical methods, biogenic synthesis offers a greener and more eco-friendly alternative. This study explores the synthesis of zinc-based nanoparticles using two distinct bacterial strains.
In this study, zinc nanoparticles were synthesized in two forms: single-phase zinc sulfide nanoparticles (ZnS NPs) and mixed-phase zinc sulfide-oxide nanoparticles (ZnS-ZnO NPs), using Achromobacter sp. S4 and Pseudomonas sp. S6. The synthesis conditions were optimized for each strain, with pH playing a crucial role: Achromobacter sp. S4 favored basic conditions (pH 8.0) for zinc nanoparticles production, while Pseudomonas sp. S6 preferred acidic conditions (pH 4.7). TEM analysis revealed that Zn NPs from Pseudomonas sp. S6 were rod-shaped, whereas those from Achromobacter sp. S4 were spherical. Further characterization using EDX, XRD, and FTIR confirmed the successful synthesis of single phase ZnS NPs and hybride phase ZnS-ZnO NPs. Antimicrobial dose-response testing showed that single-phase ZnS NPs inhibited Klebsiella pneumoniae, while mixed-phase ZnS-ZnO NPs were effective against Staphylococcus epidermidis at 100 µg/ml based on inhibition zone measurements.Furthermore, the mixed-phase ZnS-ZnO NPs at 25 µg/ml demonstrated superior inhibition of microbial growth in sludge samples, likely due to a synergistic effect.
The study demonstrates the successful biogenic synthesis of ZnS NPs, and ZnS-ZnO NPs using two bacterial strains, with distinct morphological and functional properties. The use of two bacterial species was to assess strain-specific differences in nanoparticle synthesis and performance. The synthesized nanoparticles exhibited promising antimicrobial and environmental remediation potential, highlighting their applicability in both biomedical and environmental fields.
由于锌纳米颗粒(ZnNPs)具有独特的性质和潜在的生物应用价值,其生物合成已引起了广泛关注。与化学和物理方法不同,生物合成提供了一种更绿色、更环保的替代方案。本研究探索了使用两种不同的细菌菌株合成锌基纳米颗粒。
在本研究中,使用无色杆菌属S4菌株和假单胞菌属S6菌株合成了两种形式的锌纳米颗粒:单相硫化锌纳米颗粒(ZnS NPs)和混合相硫化锌 - 氧化锌纳米颗粒(ZnS - ZnO NPs)。针对每种菌株优化了合成条件,pH起着关键作用:无色杆菌属S4菌株在碱性条件(pH 8.0)下有利于锌纳米颗粒的产生,而假单胞菌属S6菌株则偏好酸性条件(pH 4.7)。透射电子显微镜(TEM)分析表明,假单胞菌属S6菌株产生的Zn NPs呈棒状,而无色杆菌属S4菌株产生的则为球形。使用能量色散X射线光谱(EDX)、X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)进行的进一步表征证实了单相ZnS NPs和混合相ZnS - ZnO NPs的成功合成。抗菌剂量反应测试表明,基于抑菌圈测量,单相ZnS NPs对肺炎克雷伯菌有抑制作用,而混合相ZnS - ZnO NPs在100μg/ml时对表皮葡萄球菌有效。此外,25μg/ml的混合相ZnS - ZnO NPs对污泥样品中的微生物生长表现出更强的抑制作用,这可能是由于协同效应。
该研究证明了使用两种细菌菌株成功生物合成了ZnS NPs和ZnS - ZnO NPs,它们具有不同的形态和功能特性。使用两种细菌物种是为了评估纳米颗粒合成和性能方面的菌株特异性差异。合成的纳米颗粒展现出了有前景的抗菌和环境修复潜力,突出了它们在生物医学和环境领域的适用性。