纳米结构表面在牙科种植体中的应用:当代的见解与潜在的挑战。

Nanofeatured surfaces in dental implants: contemporary insights and impending challenges.

机构信息

Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA.

Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA.

出版信息

Int J Implant Dent. 2024 Jul 4;10(1):34. doi: 10.1186/s40729-024-00550-1.

Abstract

Dental implant therapy, established as standard-of-care nearly three decades ago with the advent of microrough titanium surfaces, revolutionized clinical outcomes through enhanced osseointegration. However, despite this pivotal advancement, challenges persist, including prolonged healing times, restricted clinical indications, plateauing success rates, and a notable incidence of peri-implantitis. This review explores the biological merits and constraints of microrough surfaces and evaluates the current landscape of nanofeatured dental implant surfaces, aiming to illuminate strategies for addressing existing impediments in implant therapy. Currently available nanofeatured dental implants incorporated nano-structures onto their predecessor microrough surfaces. While nanofeature integration into microrough surfaces demonstrates potential for enhancing early-stage osseointegration, it falls short of surpassing its predecessors in terms of osseointegration capacity. This discrepancy may be attributed, in part, to the inherent "dichotomy kinetics" of osteoblasts, wherein increased surface roughness by nanofeatures enhances osteoblast differentiation but concomitantly impedes cell attachment and proliferation. We also showcase a controllable, hybrid micro-nano titanium model surface and contrast it with commercially-available nanofeatured surfaces. Unlike the commercial nanofeatured surfaces, the controllable micro-nano hybrid surface exhibits superior potential for enhancing both cell differentiation and proliferation. Hence, present nanofeatured dental implants represent an evolutionary step from conventional microrough implants, yet they presently lack transformative capacity to surmount existing limitations. Further research and development endeavors are imperative to devise optimized surfaces rooted in fundamental science, thereby propelling technological progress in the field.

摘要

近三十年前,随着微粗糙钛表面的出现,牙科植入物治疗已成为标准治疗方法,通过增强骨整合,彻底改变了临床结果。然而,尽管取得了这一关键进展,但仍存在挑战,包括愈合时间延长、临床适应证受限、成功率趋于平稳以及显著的种植体周围炎发生率。本综述探讨了微粗糙表面的生物学优点和局限性,并评估了当前纳米结构牙科植入物表面的现状,旨在阐明解决植入物治疗中现有障碍的策略。目前可用的纳米结构牙科植入物将纳米结构整合到其前身微粗糙表面上。尽管将纳米特征整合到微粗糙表面上展示了增强早期骨整合的潜力,但在骨整合能力方面,它并未超越其前身。这种差异部分归因于成骨细胞的固有“二分法动力学”,其中纳米特征增加表面粗糙度会增强成骨细胞分化,但同时会阻碍细胞附着和增殖。我们还展示了一种可控的混合微-纳米钛模型表面,并将其与市售的纳米结构表面进行对比。与商业纳米结构表面不同,可控的微-纳米混合表面在增强细胞分化和增殖方面表现出更高的潜力。因此,目前的纳米结构牙科植入物代表了从传统微粗糙植入物的进化步骤,但它们目前缺乏克服现有局限性的变革能力。需要进一步的研究和开发努力来设计基于基础科学的优化表面,从而推动该领域的技术进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b620/11224214/b37d9f3edd02/40729_2024_550_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索