Suppr超能文献

元转录组学指导的基因组代谢重建揭示产甲烷群落中的碳通量和营养相互作用。

Metatranscriptomics-guided genome-scale metabolic reconstruction reveals the carbon flux and trophic interaction in methanogenic communities.

机构信息

Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.

Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan.

出版信息

Microbiome. 2024 Jul 5;12(1):121. doi: 10.1186/s40168-024-01830-z.

Abstract

BACKGROUND

Despite rapid advances in genomic-resolved metagenomics and remarkable explosion of metagenome-assembled genomes (MAGs), the function of uncultivated anaerobic lineages and their interactions in carbon mineralization remain largely uncertain, which has profound implications in biotechnology and biogeochemistry.

RESULTS

In this study, we combined long-read sequencing and metatranscriptomics-guided metabolic reconstruction to provide a genome-wide perspective of carbon mineralization flow from polymers to methane in an anaerobic bioreactor. Our results showed that incorporating long reads resulted in a substantial improvement in the quality of metagenomic assemblies, enabling the effective recovery of 132 high-quality genomes meeting stringent criteria of minimum information about a metagenome-assembled genome (MIMAG). In addition, hybrid assembly obtained 51% more prokaryotic genes in comparison to the short-read-only assembly. Metatranscriptomics-guided metabolic reconstruction unveiled the remarkable metabolic flexibility of several novel Bacteroidales-affiliated bacteria and populations from Mesotoga sp. in scavenging amino acids and sugars. In addition to recovering two circular genomes of previously known but fragmented syntrophic bacteria, two newly identified bacteria within Syntrophales were found to be highly engaged in fatty acid oxidation through syntrophic relationships with dominant methanogens Methanoregulaceae bin.74 and Methanothrix sp. bin.206. The activity of bin.206 preferring acetate as substrate exceeded that of bin.74 with increasing loading, reinforcing the substrate determinantal role.

CONCLUSION

Overall, our study uncovered some key active anaerobic lineages and their metabolic functions in this complex anaerobic ecosystem, offering a framework for understanding carbon transformations in anaerobic digestion. These findings advance the understanding of metabolic activities and trophic interactions between anaerobic guilds, providing foundational insights into carbon flux within both engineered and natural ecosystems. Video Abstract.

摘要

背景

尽管基因组解析宏基因组学取得了快速进展,宏基因组组装基因组(MAG)也有了显著的爆炸式增长,但未培养的厌氧谱系的功能及其在碳矿化中的相互作用在很大程度上仍不确定,这对生物技术和生物地球化学都有深远的影响。

结果

在这项研究中,我们结合长读测序和宏转录组学指导的代谢重建,从聚合物到甲烷,提供了一个厌氧生物反应器中碳矿化流的全基因组视角。我们的结果表明,整合长读序列可显著提高宏基因组组装的质量,有效地恢复了 132 个符合宏基因组组装基因组最低信息标准(MIMAG)的高质量基因组。此外,与仅使用短读序列的组装相比,混合组装获得了 51%更多的原核基因。宏转录组学指导的代谢重建揭示了一些新型拟杆菌门相关细菌和Mesotoga sp.中的群体在摄取氨基酸和糖方面的显著代谢灵活性。除了恢复以前已知但碎片化的两种共生细菌的两个圆形基因组外,还发现两个新鉴定的产甲烷菌 within Syntrophales 通过与优势产甲烷菌 Methanoregulaceae bin.74 和 Methanothrix sp. bin.206 的共生关系,高度参与脂肪酸氧化。以乙酸为底物的 bin.206 的活性随着负荷的增加而超过 bin.74,强化了底物决定性作用。

结论

总的来说,我们的研究揭示了这个复杂厌氧生态系统中的一些关键的活跃的厌氧谱系及其代谢功能,为理解厌氧消化中的碳转化提供了框架。这些发现增进了对厌氧菌群代谢活动和营养相互作用的理解,为工程和自然生态系统中的碳通量提供了基础见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c691/11225162/575a23aecde0/40168_2024_1830_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验