Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA; School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA.
Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA.
Magn Reson Imaging. 2024 Oct;112:116-127. doi: 10.1016/j.mri.2024.07.007. Epub 2024 Jul 4.
Multi-echo, multi-contrast methods are increasingly used in dynamic imaging studies to simultaneously quantify R and R. To overcome the computational challenges associated with nonlinear least squares (NLSQ) fitting, we propose a generalized linear least squares (LLSQ) solution to rapidly fit R and R.
Spin- and gradient-echo (SAGE) data were simulated across T and T values at high (200) and low (20) SNR. Full (four-parameter) and reduced (three-parameter) parameter fits were implemented and compared with both LLSQ and NLSQ fitting. Fit data were compared to ground truth using concordance correlation coefficient (CCC) and coefficient of variation (CV). In vivo SAGE perfusion data were acquired in 20 subjects with relapsing-remitting multiple sclerosis. LLSQ R and R, as well as cerebral blood volume (CBV), were compared with the standard NLSQ approach.
Across all fitting methods, T was well-fit at high (CCC = 1, CV = 0) and low (CCC ≥ 0.87, CV ≤ 0.08) SNR. Except for short T values (5-15 ms), T was well-fit at high (CCC = 1, CV = 0) and low (CCC ≥ 0.99, CV ≤ 0.03) SNR. In vivo, LLSQ R and R estimates were similar to NLSQ, and there were no differences in R across fitting methods at high SNR. However, there were some differences at low SNR and for R at high and low SNR. In vivo NLSQ and LLSQ three parameter fits performed similarly, as did NLSQ and LLSQ four-parameter fits. LLSQ CBV nearly matched the standard NLSQ method for R- (0.97 ratio) and R-CBV (0.98 ratio). Voxel-wise whole-brain fitting was faster for LLSQ (3-4 min) than NLSQ (16-18 h).
LLSQ reliably fit for R and R in simulated and in vivo data. Use of LLSQ methods reduced the computational demand, enabling rapid estimation of R and R.
多回波、多对比方法越来越多地用于动态成像研究中,以同时定量 R 和 R。为了克服与非线性最小二乘法(NLSQ)拟合相关的计算挑战,我们提出了一种广义线性最小二乘法(LLSQ)解决方案,以便快速拟合 R 和 R。
在高(200)和低(20)SNR 下,对自旋和梯度回波(SAGE)数据进行了 T 和 T 值的模拟。实施了全(四参数)和简化(三参数)参数拟合,并将其与 LLSQ 和 NLSQ 拟合进行了比较。使用一致性相关系数(CCC)和变异系数(CV)将拟合数据与真实数据进行比较。在 20 名复发缓解型多发性硬化症患者中采集了 SAGE 灌注的体内数据。将 LLSQ R 和 R 以及脑血容量(CBV)与标准 NLSQ 方法进行了比较。
在所有拟合方法中,T 在高(CCC=1,CV=0)和低(CCC≥0.87,CV≤0.08)SNR 下拟合良好。除了短 T 值(5-15ms)外,T 在高(CCC=1,CV=0)和低(CCC≥0.99,CV≤0.03)SNR 下拟合良好。在体内,LLSQ R 和 R 的估计值与 NLSQ 相似,并且在高 SNR 下,不同拟合方法之间的 R 没有差异。然而,在低 SNR 下以及在高和低 SNR 下,R 存在一些差异。在体内,NLSQ 和 LLSQ 三参数拟合的效果相似,NLSQ 和 LLSQ 四参数拟合的效果也相似。LLSQ CBV 与标准 NLSQ 方法在 R-(0.97 比)和 R-CBV(0.98 比)方面非常匹配。对于 LLSQ(3-4 分钟)来说,全脑拟合的计算速度比 NLSQ(16-18 小时)更快。
LLSQ 可可靠地拟合模拟和体内数据中的 R 和 R。使用 LLSQ 方法降低了计算需求,从而能够快速估计 R 和 R。