Maity Subhankar, Saikia Manob Jyoti
Biomedical Sensors & Systems Lab, University of Memphis, Memphis, TN 38152, USA.
Electrical and Computer Engineering Department, University of Memphis, Memphis, TN 38152, USA.
Bioengineering (Basel). 2025 Jun 10;12(6):631. doi: 10.3390/bioengineering12060631.
This paper provides a systematic and in-depth examination of large language models (LLMs) in the healthcare domain, addressing their significant potential to transform medical practice through advanced natural language processing capabilities. Current implementations demonstrate LLMs' promising applications across clinical decision support, medical education, diagnostics, and patient care, while highlighting critical challenges in privacy, ethical deployment, and factual accuracy that require resolution for responsible integration into healthcare systems. This paper provides a comprehensive understanding of the background of healthcare LLMs, the evolution and architectural foundation, and the multimodal capabilities. Key methodological aspects-such as domain-specific data acquisition, large-scale pre-training, supervised fine-tuning, prompt engineering, and in-context learning-are explored in the context of healthcare use cases. The paper highlights the trends and categorizes prominent application areas in medicine. Additionally, it critically examines the prevailing technical and social challenges of healthcare LLMs, including issues of model bias, interpretability, ethics, governance, fairness, equity, data privacy, and regulatory compliance. The survey concludes with an outlook on emerging research directions and strategic recommendations for the development and deployment of healthcare LLMs.
本文对医疗保健领域的大语言模型(LLMs)进行了系统而深入的研究,探讨了它们凭借先进的自然语言处理能力在改变医疗实践方面的巨大潜力。当前的应用实例展示了大语言模型在临床决策支持、医学教育、诊断和患者护理等方面的广阔应用前景,同时也凸显了在隐私、道德部署和事实准确性等方面的关键挑战,这些挑战需要解决才能将其负责任地整合到医疗保健系统中。本文全面介绍了医疗保健大语言模型的背景、发展历程和架构基础,以及多模态能力。在医疗保健用例的背景下,探讨了关键的方法学方面,如特定领域的数据获取、大规模预训练、监督微调、提示工程和上下文学习。本文突出了相关趋势,并对医学领域的主要应用领域进行了分类。此外,它还对医疗保健大语言模型当前面临的技术和社会挑战进行了批判性审视,包括模型偏差、可解释性、伦理、治理、公平、公正、数据隐私和监管合规等问题。调查最后展望了新兴的研究方向,并对医疗保健大语言模型的开发和部署提出了战略建议。