Suppr超能文献

用于微波传感的神经形态架构的基于相量的分析。

Phasor-based analysis of a neuromorphic architecture for microwave sensing.

作者信息

Soleimani Ashkan, Forooraghi Keyvan, Atlasbaf Zahra

机构信息

Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, 14115-194, Iran.

出版信息

Sci Rep. 2024 Jul 6;14(1):15590. doi: 10.1038/s41598-024-66156-0.

Abstract

This article presents a design procedure for implementing artificial neural networks (ANNs) using conventional microwave components at the hardware level with potential applications in radar and remote sensing. The main objective is to develop structured hardware design methods for implementing artificial neurons, utilizing microwave devices to create neuromorphic devices compatible with high-frequency electromagnetic waves. The research aims to address the challenge of encoding and modulating information in electromagnetic waves into a format suitable for the neuromorphic device by using frequency-modulated information instead of intensity-modulated information. It also proposes a method for integrating principal component analysis as a dimensionality reduction technique with the implementation of ANNs on a single hardware. As a dummy task, the process outlined here is used to implement an artificial neural network at the hardware level, with a specific emphasis on creating hardware that is capable of performing matrix multiplications in the form of dot products while also being able to extract the resulting data in an interpretable manner. The proposed implementation involves the use of directional couplers to implement weights and sample the resulting signal at specific intervals to obtain the multiplication result.

摘要

本文介绍了一种在硬件层面使用传统微波组件实现人工神经网络(ANN)的设计流程,其在雷达和遥感领域具有潜在应用。主要目标是开发用于实现人工神经元的结构化硬件设计方法,利用微波器件创建与高频电磁波兼容的神经形态器件。该研究旨在通过使用调频信息而非强度调制信息来解决将电磁波中的信息编码和调制为适合神经形态器件的格式这一挑战。它还提出了一种将主成分分析作为降维技术与在单个硬件上实现人工神经网络相结合的方法。作为一个虚拟任务,这里概述的过程用于在硬件层面实现人工神经网络,特别强调创建能够以点积形式执行矩阵乘法并以可解释方式提取结果数据的硬件。所提出的实现方法涉及使用定向耦合器来实现权重,并在特定间隔对结果信号进行采样以获得乘法结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea0b/11227532/56d882b5c561/41598_2024_66156_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验