Suppr超能文献

基于电子病历数据的自然语言处理预测腹腔内损伤。

Prediction of intra-abdominal injury using natural language processing of electronic medical record data.

机构信息

Chicago Medical School, Rosalind Franklin University, Chicago, IL.

Feinberg School of Medicine, Northwestern University, Chicago, IL.

出版信息

Surgery. 2024 Sep;176(3):577-585. doi: 10.1016/j.surg.2024.05.042. Epub 2024 Jul 6.

Abstract

BACKGROUND

This study aimed to use natural language processing to predict the presence of intra-abdominal injury using unstructured data from electronic medical records.

METHODS

This was a random-sample retrospective observational cohort study leveraging unstructured data from injured patients taken to one of 9 acute care hospitals in an integrated health system between 2015 and 2021. Patients with International Classification of Diseases External Cause of Morbidity codes were identified. History and physical, consult, progress, and radiology report text from the first 8 hours of care were abstracted. Annotator dyads independently annotated encounters' text files to establish ground truth regarding whether intra-abdominal injury occurred. Features were extracted from text using natural language processing techniques, bag of words, and principal component analysis. We tested logistic regression, random forests, and gradient boosting machine to determine accuracy, recall, and precision of natural language processing to predict intra-abdominal injury.

RESULTS

A random sample of 7,000 patient encounters of 177,127 was annotated. Only 2,951 had sufficient information to determine whether an intra-abdominal injury was present. Among those, 84 (2.9%) had an intra-abdominal injury. The concordance between annotators was 0.989. Logistic regression of features identified with bag of words and principal component analysis had the best predictive ability, with an area under the receiver operating characteristic curve of 0.9, recall of 0.73, and precision of 0.17. Text features with greatest importance included "abdomen," "pelvis," "spleen," and "hematoma."

CONCLUSION

Natural language processing could be a screening decision support tool, which, if paired with human clinical assessment, can maximize precision of intra-abdominal injury identification.

摘要

背景

本研究旨在使用自然语言处理技术,通过电子病历中的非结构化数据预测腹腔内损伤的存在。

方法

这是一项随机抽样回顾性观察队列研究,利用了 2015 年至 2021 年间在一个综合医疗系统的 9 家急性护理医院就诊的受伤患者的非结构化数据。确定了国际疾病分类外源性发病原因代码的患者。从最初 8 小时的护理中提取病史、体检、会诊、进展和放射学报告文本。注释员对每个就诊的文本文件进行注释,以确定腹腔内损伤是否发生的真实情况。使用自然语言处理技术、词袋和主成分分析从文本中提取特征。我们测试了逻辑回归、随机森林和梯度提升机,以确定自然语言处理预测腹腔内损伤的准确性、召回率和精度。

结果

对 177127 名患者的 7000 次就诊进行了随机抽样,其中只有 2951 次就诊有足够的信息来确定是否存在腹腔内损伤。在这些患者中,有 84 人(2.9%)存在腹腔内损伤。注释员之间的一致性为 0.989。基于词袋和主成分分析的特征逻辑回归具有最佳的预测能力,受试者工作特征曲线下面积为 0.9,召回率为 0.73,精度为 0.17。最重要的文本特征包括“腹部”、“骨盆”、“脾脏”和“血肿”。

结论

自然语言处理可以作为一种筛选决策支持工具,如果与人工临床评估相结合,可以最大限度地提高腹腔内损伤识别的精度。

相似文献

1
Prediction of intra-abdominal injury using natural language processing of electronic medical record data.
Surgery. 2024 Sep;176(3):577-585. doi: 10.1016/j.surg.2024.05.042. Epub 2024 Jul 6.
4
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.

引用本文的文献

1
The Diagnosis and Management of Pediatric Blunt Abdominal Trauma-A Comprehensive Review.
Diagnostics (Basel). 2024 Oct 10;14(20):2257. doi: 10.3390/diagnostics14202257.

本文引用的文献

1
Receiver operating characteristic curve analysis in diagnostic accuracy studies: A guide to interpreting the area under the curve value.
Turk J Emerg Med. 2023 Oct 3;23(4):195-198. doi: 10.4103/tjem.tjem_182_23. eCollection 2023 Oct-Dec.
2
Prediction of intracranial pressure crises after severe traumatic brain injury using machine learning algorithms.
J Neurosurg. 2023 Jan 27;139(2):528-535. doi: 10.3171/2022.12.JNS221860. Print 2023 Aug 1.
3
Natural Language Processing Applications for Computer-Aided Diagnosis in Oncology.
Diagnostics (Basel). 2023 Jan 12;13(2):286. doi: 10.3390/diagnostics13020286.
4
Large-scale identification of aortic stenosis and its severity using natural language processing on electronic health records.
Cardiovasc Digit Health J. 2021 Mar 18;2(3):156-163. doi: 10.1016/j.cvdhj.2021.03.003. eCollection 2021 Jun.
6
Prediction of severe chest injury using natural language processing from the electronic health record.
Injury. 2021 Feb;52(2):205-212. doi: 10.1016/j.injury.2020.10.094. Epub 2020 Oct 25.
10
Open-access programs for injury categorization using ICD-9 or ICD-10.
Inj Epidemiol. 2018 Apr 9;5(1):11. doi: 10.1186/s40621-018-0149-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验