Vanderbilt University Medical Center, Nashville, TN.
AMIA Annu Symp Proc. 2021 Jan 25;2020:1130-1139. eCollection 2020.
Pneumonia is the most frequent cause of infectious disease-related deaths in children worldwide. Clinical decision support (CDS) applications can guide appropriate treatment, but the system must first recognize the appropriate diagnosis. To enable CDS for pediatric pneumonia, we developed an algorithm integrating natural language processing (NLP) and random forest classifiers to identify potential pediatric pneumonia from radiology reports. We deployed the algorithm in the EHR of a large children's hospital using real-time NLP. We describe the development and deployment of the algorithm, and evaluate our approach using 9-months of data gathered while the system was in use. Our model, trained on individual radiology reports, had an AUC of 0.954. The intervention, evaluated on patient encounters that could include multiple radiology reports, achieved a sensitivity, specificity, and positive predictive value of0.899, 0.949, and 0.781, respectively.
肺炎是全球儿童因传染病导致死亡的最常见原因。临床决策支持(CDS)应用程序可以指导适当的治疗,但系统必须首先识别出适当的诊断。为了实现儿科肺炎的 CDS,我们开发了一种集成自然语言处理(NLP)和随机森林分类器的算法,以从放射学报告中识别出潜在的儿科肺炎。我们使用实时 NLP 在一家大型儿童医院的电子健康记录中部署了该算法。我们描述了该算法的开发和部署,并使用系统使用期间收集的 9 个月数据来评估我们的方法。我们的模型在单个放射学报告上进行训练,AUC 为 0.954。该干预措施在可能包含多个放射学报告的患者就诊中进行评估,其敏感性、特异性和阳性预测值分别为 0.899、0.949 和 0.781。