Mohanta Zinia, Gori Sadakatali, McMahon Michael T
Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.
F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland 21205, United States.
ACS Omega. 2024 Jun 17;9(26):27755-27765. doi: 10.1021/acsomega.4c02296. eCollection 2024 Jul 2.
Intramolecular hydrogen bonding-based chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) contrast agents represent an innovative design strategy aiming to overcome limitations in diamagnetic CEST (diaCEST) MRI contrast agent specificity and also those associated with traditional metal-based MRI contrast agents. Ward and Balaban's proposal of small diamagnetic compounds marked a paradigm shift in contrast-based radiologic research, inspiring extensive investigations since 2000. These contrast agents leverage labile hydrogen bonds, serving as chemical exchange sites to induce saturation of water. The selective manipulation of radiofrequency (RF) allows for optimized signal contrast in soft tissue, with a significant signal amplification even at low probe concentrations, mitigating concerns about dose-dependent toxicities. This mini-review delves into the evolution of CEST MRI, its classification, and the strategic design principles of synthetic small molecules containing intramolecular hydrogen bonds. With a focus on applications and potential clinical relevance, the authors highlight the promising role of intramolecular hydrogen bonding-based CEST MRI in diverse medical contexts, especially renal imaging and pH mapping, paving the way for enhanced molecular imaging capabilities. Ongoing research endeavors aim to further optimize and expand the utility of these contrast agents, underscoring their transformative potential in clinical diagnostics and imaging.
基于分子内氢键的化学交换饱和转移磁共振成像(CEST MRI)造影剂代表了一种创新的设计策略,旨在克服抗磁性CEST(diaCEST)MRI造影剂特异性方面的局限性以及与传统金属基MRI造影剂相关的局限性。沃德和巴拉班提出的小抗磁性化合物标志着基于造影的放射学研究的范式转变,自2000年以来激发了广泛的研究。这些造影剂利用不稳定的氢键,作为化学交换位点来诱导水的饱和。对射频(RF)的选择性操纵可实现软组织中优化的信号对比度,即使在低探针浓度下也有显著的信号放大,减轻了对剂量依赖性毒性的担忧。这篇综述探讨了CEST MRI的发展、其分类以及含有分子内氢键的合成小分子的战略设计原则。作者重点关注应用和潜在的临床相关性,强调基于分子内氢键的CEST MRI在各种医学背景下,特别是肾脏成像和pH映射中的前景作用,为增强分子成像能力铺平了道路。正在进行的研究努力旨在进一步优化和扩展这些造影剂的效用,突出了它们在临床诊断和成像中的变革潜力。