文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多组学单细胞和空间转录组数据分析的 Panpipes 管道。

Panpipes: a pipeline for multiomic single-cell and spatial transcriptomic data analysis.

机构信息

Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Germany.

Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany.

出版信息

Genome Biol. 2024 Jul 8;25(1):181. doi: 10.1186/s13059-024-03322-7.


DOI:10.1186/s13059-024-03322-7
PMID:38978088
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11229213/
Abstract

Single-cell multiomic analysis of the epigenome, transcriptome, and proteome allows for comprehensive characterization of the molecular circuitry that underpins cell identity and state. However, the holistic interpretation of such datasets presents a challenge given a paucity of approaches for systematic, joint evaluation of different modalities. Here, we present Panpipes, a set of computational workflows designed to automate multimodal single-cell and spatial transcriptomic analyses by incorporating widely-used Python-based tools to perform quality control, preprocessing, integration, clustering, and reference mapping at scale. Panpipes allows reliable and customizable analysis and evaluation of individual and integrated modalities, thereby empowering decision-making before downstream investigations.

摘要

单细胞多组学分析表观基因组、转录组和蛋白质组,可以全面描述构成细胞身份和状态的分子电路。然而,由于缺乏系统的、联合评估不同模态的方法,因此此类数据集的整体解释仍然具有挑战性。在这里,我们提出了 Panpipes,这是一组计算工作流程,旨在通过整合广泛使用的基于 Python 的工具来自动执行多模态单细胞和空间转录组分析,从而实现大规模的质量控制、预处理、集成、聚类和参考映射。Panpipes 允许对单个和集成模态进行可靠和可定制的分析和评估,从而在下游研究之前为决策提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a470/11229213/484449cebe38/13059_2024_3322_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a470/11229213/9a26b5f27810/13059_2024_3322_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a470/11229213/de8d3a5a668b/13059_2024_3322_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a470/11229213/a33ea6ad7872/13059_2024_3322_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a470/11229213/984110fef29e/13059_2024_3322_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a470/11229213/484449cebe38/13059_2024_3322_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a470/11229213/9a26b5f27810/13059_2024_3322_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a470/11229213/de8d3a5a668b/13059_2024_3322_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a470/11229213/a33ea6ad7872/13059_2024_3322_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a470/11229213/984110fef29e/13059_2024_3322_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a470/11229213/484449cebe38/13059_2024_3322_Fig5_HTML.jpg

相似文献

[1]
Panpipes: a pipeline for multiomic single-cell and spatial transcriptomic data analysis.

Genome Biol. 2024-7-8

[2]
Dictionary learning for integrative, multimodal and scalable single-cell analysis.

Nat Biotechnol. 2024-2

[3]
Benchmarking UMI-based single-cell RNA-seq preprocessing workflows.

Genome Biol. 2021-12-14

[4]
Single Cell Explorer, collaboration-driven tools to leverage large-scale single cell RNA-seq data.

BMC Genomics. 2019-8-27

[5]
VPAC: Variational projection for accurate clustering of single-cell transcriptomic data.

BMC Bioinformatics. 2019-5-1

[6]
STExplore: An Integrated Online Platform for Comprehensive Analysis and Visualization of Spatial Transcriptomics Data.

Small Methods. 2025-5

[7]
Characterizing the impacts of dataset imbalance on single-cell data integration.

Nat Biotechnol. 2024-12

[8]
scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.

Brief Bioinform. 2024-3-27

[9]
DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.

Bioinformatics. 2018-1-1

[10]
scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.

BMC Genomics. 2019-5-8

引用本文的文献

[1]
Ex vivo model of functioning human lymph node reveals role for innate lymphocytes and stroma in response to vaccine adjuvant.

Cell Rep. 2025-7-22

[2]
Single-cell genomics and spatial transcriptomics in islet transplantation for diabetes treatment: advancing towards personalized therapies.

Front Immunol. 2025-2-20

[3]
A longitudinal single-cell atlas of anti-tumour necrosis factor treatment in inflammatory bowel disease.

Nat Immunol. 2024-11

[4]
hadge: a comprehensive pipeline for donor deconvolution in single-cell studies.

Genome Biol. 2024-4-26

[5]
Scaling up single-cell RNA-seq data analysis with CellBridge workflow.

Bioinformatics. 2023-12-1

本文引用的文献

[1]
An in-depth comparison of linear and non-linear joint embedding methods for bulk and single-cell multi-omics.

Brief Bioinform. 2023-11-22

[2]
Benchmarking algorithms for joint integration of unpaired and paired single-cell RNA-seq and ATAC-seq data.

Genome Biol. 2023-10-24

[3]
MultiVI: deep generative model for the integration of multimodal data.

Nat Methods. 2023-8

[4]
An integrated cell atlas of the lung in health and disease.

Nat Med. 2023-6

[5]
Best practices for single-cell analysis across modalities.

Nat Rev Genet. 2023-8

[6]
Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges.

J Genet Genomics. 2023-9

[7]
Impact of the Human Cell Atlas on medicine.

Nat Med. 2022-12

[8]
The performance of deep generative models for learning joint embeddings of single-cell multi-omics data.

Front Mol Biosci. 2022-10-26

[9]
The emerging landscape of spatial profiling technologies.

Nat Rev Genet. 2022-12

[10]
An introduction to spatial transcriptomics for biomedical research.

Genome Med. 2022-6-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索